The Relation between Baroclinic Adjustment and Turbulent Diffusion in the Two-Layer Model

Author:

Zurita-Gotor Pablo1

Affiliation:

1. UCAR Visiting Scientist Program, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

Abstract Baroclinic adjustment and turbulent diffusion are two popular paradigms used to describe the eddy–mean flow closure in the two-layer model, with very different implications for the criticality of the system. Baroclinic adjustment postulates the existence of preferred equilibrium states, while the turbulent diffusion framework predicts smooth variations of the mean state with the forcing. This study investigates the relevance of each paradigm over a wide range of the parameter space, including very strong changes in the diabatic forcing. The results confirm the weak sensitivity of the criticality against changes in the forcing noted by baroclinic adjustment studies but do not support the existence of preferred equilibrium states. The weak sensitivity of the mean state when the forcing is varied is consistent with the steepness of the diffusive closure predicted by homogeneous turbulence theories. These turbulent predictions have been tested locally against observed empirical diffusivities, extending a previous study by Pavan and Held. The results suggest that a local closure works well, even at low criticalities when the eddy momentum fluxes are important, provided that the criticality is generalized to include the effect of the meridional curvature potential vorticity (PV) gradient. When friction is weak, the development of this curvature may be important for halting the cascade and making the flow more linear. A remarkable difference from previous homogeneous results is that the empirical closure does not appear to steepen at low criticality. This may be due to the use of a generalized criticality or to the distinction between a local and domain-averaged closure.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3