Prediction Skill of GEFSv12 in Depicting Monthly Rainfall and Associated Extreme Events over Taiwan during the Summer Monsoon

Author:

Nageswararao M. M.1,Zhu Yuejian2ORCID,Tallapragada Vijay2,Chen Meng-Shih3

Affiliation:

1. a CPAESS, University Corporation for Atmospheric Research, NOAA/NWS/NCEP/EMC, College Park, Maryland

2. b NOAA/NWS/NCEP/EMC, College Park, Maryland

3. c Central Weather Bureau, Taipei, Taiwan

Abstract

Abstract The skillful prediction of monthly scale rainfall in small regions like Taiwan is one of the challenges of the meteorological scientific community. Taiwan is one of the subtropical islands in Asia. It experiences rainfall extremes regularly, leading to landslides and flash floods in/near the mountains and flooding over low-lying plains, particularly during the summer monsoon season [June–September (JJAS)]. In September 2020, NOAA/NCEP implemented Global Ensemble Forecast System, version 12 (GEFSv12), to support stakeholders for subseasonal forecasts and hydrological applications. In the present study, the performance evaluation of GEFSv12 for monthly rainfall and associated extreme rainfall (ER) events over Taiwan during JJAS against CMORPH has been done. There is a marginal improvement of GEFSv12 in depicting the East Asian summer monsoon index (EASMI) as compared to GEFS-SubX. The GEFSv12 rainfall raw products have been calibrated with a quantile–quantile (QQ) mapping technique for further prediction skill improvement. The results reveal that the spatial patterns of climatological features (mean, interannual variability, and coefficient of variation) of summer monsoon monthly rainfall over Taiwan from QQ-GEFSv12 are very similar to CMORPH than Raw-GEFSv12. Raw-GEFSv12 has an enormous wet bias and overforecast wet days, while QQ-GEFSv12 is close to reality. The prediction skill (correlation coefficient and index of agreement) of GEFSv12 in depicting the summer monsoon monthly rainfall over Taiwan is significantly high (>0.5) in most parts of Taiwan and particularly more during peak monsoon months, September, and August, followed by June and July. The calibration method significantly reduces the overestimation (underestimation) of wet (ER) events from the ensemble mean and probabilistic ensemble forecasts. The predictability of extreme rainfall events (>50 mm day−1) has also improved significantly.

Funder

NOAA/NWS/NCEP/EMC

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference102 articles.

1. The influence of Tibetan Plateau on the interannual variability of Asian monsoon;Aiming, W.,1997

2. The role of mesoscale and topographically induced circulations initiating a flash flood observed during the TAMEX project;Akaeda, K.,1995

3. Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

4. The quiet revolution of numerical weather prediction;Bauer, P.,2015

5. Verification of forecasts expressed in terms of probability;Brier, G. W.,1950

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3