Flow Dependence of Medium-Range Precipitation Forecast Skill over California

Author:

Moore Benjamin J.1ORCID

Affiliation:

1. a NOAA/Physical Sciences Laboratory, Boulder, Colorado

Abstract

Abstract This study employs a long time series (1997–2017) of reforecasts based on a version of the ECMWF Integrated Forecast System to evaluate the dependence of medium-range (i.e., 3–15 days) precipitation forecast skill over California on the state of the large-scale atmospheric flow. As a basis for this evaluation, four recurrent large-scale flow regimes over the North Pacific and western North America associated with precipitation in a domain encompassing northern and central California were objectively identified in ECMWF ERA5 reanalysis data for November–March 1981–2017. Two of the regimes are characterized by zonal upper-level flow across the North Pacific, and the other two are characterized by wavy, blocked flow. Forecast verification statistics conditioned on regime occurrence indicate considerably lower medium-range precipitation skill over California in blocking regimes than in zonal regimes. Moreover, forecasts of blocking regimes tend to exhibit larger errors and uncertainty in the synoptic-scale flow over the eastern North Pacific and western North America compared with forecasts of zonal regimes. Composite analyses for blocking forecasts reveal a tendency for errors to develop in conjunction with the amplification of a ridge over the western and central North Pacific. The errors in the ridge tend to be communicated through the large-scale Rossby wave pattern, resulting in misforecasting of downstream trough amplification and, thereby, moisture flux and precipitation over California. The composites additionally indicate that error growth in the blocking ridge can be linked to misrepresentation of baroclinic development as well as upper-level divergent outflow associated with latent heat release. Significance Statement This study examines the degree to which the medium-range (out to ∼2-week lead time) precipitation forecast skill over California depends on the large-scale atmospheric flow regime over the North Pacific. An evaluation of retrospective model forecasts from ECMWF for 1997–2017 reveals that the skill tends to be considerably lower in regimes featuring a wavy, “blocked” North Pacific jet stream than in regimes featuring a west–east-oriented jet stream. This difference in skill relates to a tendency for forecasts of blocked regimes to exhibit significantly larger errors than forecasts of zonal regimes. The results could aid forecasters by increasing situational awareness and informing the interpretation and application of model forecasts for precipitation affecting California.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference117 articles.

1. Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids;Accadia, C.,2003

2. Linkage of atmospheric blocks and synoptic-scale Rossby waves: A climatological analysis;Altenhoff, A. M.,2008

3. Amante, C., and B. W. Eakins, 2009: ETOPO1 1-arc-minute global relief model: Procedures, data sources, and analysis. NOAA Tech. Memo. NESDIS NGDC-24, NOAA/National Geophysical Data Center, 25 pp., https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

4. Potential vorticity dynamics of forecast errors: A quantitative case study;Baumgart, M.,2018

5. Quantitative view on the processes governing the upscale error growth up to the planetary scale using a stochastic convection scheme;Baumgart, M.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3