Attribution of North American Subseasonal Precipitation Prediction Skill

Author:

Sun Lantao1ORCID,Hoerling Martin P.2,Richter Jadwiga H.3,Hoell Andrew2,Kumar Arun4,Hurrell James W.1

Affiliation:

1. a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. b NOAA/Physical Sciences Laboratory, Boulder, Colorado

3. c Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

4. d NOAA/Climate Prediction Center, College Park, Maryland

Abstract

Abstract The skill of NOAA’s official monthly U.S. precipitation forecasts (issued in the middle of the prior month) has historically been low, having shown modest skill over the southern United States, but little or no skill over large portions of the central United States. The goal of this study is to explain the seasonal and regional variations of the North American subseasonal (weeks 3–6) precipitation skill, specifically the reasons for its successes and its limitations. The performances of multiple recent-generation model reforecasts over 1999–2015 in predicting precipitation are compared to uninitialized simulation skill using the atmospheric component of the forecast systems. This parallel analysis permits attribution of precipitation skill to two distinct sources: one due to slowly evolving ocean surface boundary states and the other to faster time-scale initial atmospheric weather states. A strong regionality and seasonality in precipitation forecast performance is shown to be analogous to skill patterns dictated by boundary forcing constraints alone. The correspondence is found to be especially high for the North American pattern of the maximum monthly skill that is achieved in the reforecast. The boundary forcing of most importance originates from tropical Pacific SST influences, especially those related to El Niño–Southern Oscillation. We discuss physical constraints that may limit monthly precipitation skill and interpret the performance of existing models in the context of plausible upper limits. Significance Statement Skillful subseasonal precipitation predictions have societal benefits. Over the United States, however, NOAA’s official U.S. monthly precipitation forecast skill has been historically low. Here we explore origins for skill of North American week-3 to week-6 precipitation predictions. Skill arising from initial weather states is compared to that arising from ocean surface boundary states alone. The monthly and seasonally varying pattern of U.S. monthly precipitation skill is appreciably derived from boundary constraints, linked especially with El Niño–Southern Oscillation. Forecasts of opportunity are identified, despite the low skill of monthly precipitation forecasts on average. Potential limits of monthly precipitation skill are explored that provide insight on the juxtaposition of “skill deserts” over the central United States with high skill regions over western North America.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference75 articles.

1. Global precipitation: Means, variations and trends during the satellite era (1979–2014);Adler, R. F.,2017

2. Subseasonal predictability of the North Atlantic Oscillation;Albers, J. R.,2021

3. How MJO teleconnections and ENSO interference impacts U.S. precipitation;Arcodia, M. C.,2020

4. The quiet revolution of numerical weather prediction;Bauer, P.,2015

5. The Community Earth System Model Version 2 (CESM2);Danabasoglu, G.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3