Challenges in the Description of Sea Ice for a Kilometer-Scale Weather Forecasting System

Author:

Müller Malte12,Batrak Yurii1,Dinessen Frode3,Grote Rafael1,Wang Keguang3

Affiliation:

1. a Development Centre for Weather Forecasting, Norwegian Meteorological Institute, Oslo, Norway

2. b Department of Geosciences, University of Oslo, Oslo, Norway

3. c Research and Development Department, Norwegian Meteorological Institute, Oslo, Norway

Abstract

Abstract Simulation of atmosphere–ocean–ice interactions in coupled Earth modeling systems with kilometer-scale resolution is a new challenge in operational numerical weather prediction. This study presents an assessment of sensitivity experiments performed with different sea ice products in a convective-scale weather forecasting system for the European Arctic. On kilometer-scale resolution sea ice products are challenged by the large footprint of passive microwave satellite observations and issues with spurious sea ice detection of the higher-resolution retrievals based on synthetic aperture radar instruments. We perform sensitivity experiments with sea ice concentration fields of 1) the global ECMWF-IFS forecast system, 2) a newly developed multisensor product processed through a coupled sea ice–ocean forecasting system, and 3) the AMSR2 product based on passive microwave observations. There are significant differences between the products on O(100) km scales in the northern Barents Sea and along the Marginal Ice Zone north of the Svalbard archipelago and toward the Fram Strait. These differences have a direct impact on the modeled surface skin temperature over ocean and sea ice, the turbulent heat flux, and 2-m air temperature (T2M). An assessment of Arctic weather stations shows a significant improvement of forecasted T2M in the north and east of Svalbard when using the new multisensor product; however, south of Svalbard this product has a negative impact. The different sea ice products are resulting in changes of the surface turbulent heat flux of up to 400 W m−2, which in turn results in T2M variations of up to 5°C. Over a 2-day forecast lead time this can lead to uncertainties in weather forecasts of about 1°C even hundreds of kilometers away from the sea ice. Significance Statement Weather forecasting in polar regions requires an accurate description of sea ice properties due to the very important atmosphere–ocean–ice interactions. With the increasing resolution of weather forecasting systems, there is also a need to advance the resolution of the sea ice characteristics in the models. This is, however, not straightforward due to various issues in the sea ice satellite products. This study explores new products and approaches to integrate high-resolution sea ice in a weather prediction system. We find that the model is sensitive to the choice of the sea ice product and that it is still challenging to provide an accurate sea ice field on a kilometer-scale resolution.

Funder

Norsk Romsenter

Norges Forskningsråd

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference49 articles.

1. Estimation of heat and mass fluxes over Arctic leads;Andreas, E. L,1980

2. Atmospheric response to kilometer-scale changes in sea ice concentration within the Marginal Ice Zone;Batrak, Y.,2018

3. On the warm bias in atmospheric reanalyses induced by the missing snow over arctic sea-ice;Batrak, Y.,2019

4. Implementation of a simple thermodynamic sea ice scheme, SICE version 1.0-38h1, within the ALADIN–HIRLAM numerical weather prediction system version 38h1;Batrak, Y.,2018

5. The HARMONIE-AROME model configuration in the ALADIN-HIRLAM NWP system;Bengtsson, L.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3