Extracting 3-D Radar Features to Improve Quantitative Precipitation Estimation in Complex Terrain based on Deep Learning Neural Networks

Author:

Cheng Yung-Yun1,Chang Chia-Tung1,Chen Buo-Fu1,Kuo Hung-Chi12,Lee Cheng-Shang12

Affiliation:

1. 1 Center for Weather Climate and Disaster Research, National Taiwan University, Taipei, Taiwan

2. 2 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Abstract

Abstract This paper proposes a new quantitative precipitation estimation (QPE) technique to provide accurate rainfall estimates in complex terrain, where conventional QPE has limitations. The operational radar QPE in Taiwan is mainly based on the simplified relationship between radar reflectivity Z and rain rate R [R(Z) relation] and only utilizes the single-point lowest available echo to estimate rain rates, leading to low accuracy in complex terrain. Here, we conduct QPE using deep learning that extracts features from 3-D radar reflectivities to address the above issues. Convolutional neural networks (CNN) are used to analyze contoured frequency by altitude diagrams (CFADs) to generate the QPE. CNN models are trained on existing rain gauges in northern and eastern Taiwan with the three-year data during 2015–17 and validated and tested using 2018 data. The weights of heavy rains (≧10 mm h-1) are increased in the model loss calculation to handle the unbalanced rainfall data and improve accuracy. Results show that the CNN outperforms the R(Z) relation based on the 2018 rain-gauge data. Furthermore, this research proposes methods to conduct 2-D gridded QPE at every pixel by blending estimates from various trained CNN models. Verification based on independent rain gauges shows that the CNN QPE solves the underestimation of the R(Z) relation in mountainous areas. Case studies are presented to visualize the results, showing that the CNN QPE generates better small-scale rainfall features and more accurate precipitation information. This deep learning QPE technique may be helpful for the disaster prevention of small-scale flash floods in complex terrain.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3