Recent Impact of COSMIC-2 with Improved Radio Occultation Data Assimilation Algorithms

Author:

Cucurull Lidia1ORCID

Affiliation:

1. a NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Abstract

Abstract A Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) follow-on constellation, COSMIC-2, was successfully launched into equatorial orbit on 24 June 2019. With an increased signal-to-noise ratio due to improved receivers and digital beam-steering antennas, COSMIC-2 is producing about 5000 high-quality radio occultation (RO) profiles daily over the tropics and subtropics. The initial evaluation of the impact of assimilating COSMIC-2 into NOAA’s Global Forecast System (GFS) showed mixed results, and adjustments to quality control procedures and observation error characteristics had to be made prior to the assimilation of this dataset in the operational configuration in May 2020. Additional changes in the GFS that followed this initial operational implementation resulted in a larger percentage of rejection (∼90%) of all RO observations, including COSMIC-2, in the mid- to lower troposphere. Since then, two software upgrades directly related to the assimilation of RO bending angle observations were developed. These improvements were aimed at optimizing the utilization of COSMIC-2 and other RO observations to improve global weather analyses and forecasts. The first upgrade was implemented operationally in September 2021 and the second one in November 2022. This study describes both RO software upgrades and evaluates the impact of COSMIC-2 with this most recently improved configuration. Specifically, we show that the assimilation of COSMIC-2 observations has a significant impact in improving temperature and winds in the tropics, though benefits also extend to the extratropical latitudes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference18 articles.

1. Assimilation of GPS radio occultation data at DWD;Anlauf, H.,2011

2. The COSMIC/FORMOSAT-3 Mission: Early results;Anthes, R. A.,2008

3. GNSS radio occultation constellation observing system experiments;Bauer, P.,2014

4. Implementation of a quality control for radio occultation observations in the presence of large gradients of atmospheric refractivity;Cucurull, L.,2015

5. An improved one-dimensional bending angle forward operator for the assimilation of radio occultation profiles in the lower troposphere;Cucurull, L.,2023

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3