On High Winds and Foehn Warming Associated with Mountain-Wave Events in the Western Foothills of the Southern Appalachian Mountains

Author:

Gaffin David M.1

Affiliation:

1. National Weather Service, Morristown, Tennessee

Abstract

Abstract Extremely high winds of 40–49 m s−1 [90–110 miles per hour (mph)] were reported across the western foothills of the southern Appalachian Mountains on 22–23 December 2004, 17 October 2006, 24–25 February 2007, and 1 March 2007. The high winds in all four of these events were determined to be the result of mountain waves, as strong southeast winds became perpendicular to the mountains with a stable boundary layer present below 750 hPa and a veering wind profile that increased with height. Adiabatic warming of the descending southeasterly winds was also observed at the Knoxville airport during all four events (although of varying intensities), with the 850-hPa air mass immediately upwind of the Smoky Mountains determined to be the source region of these foehn winds. An interesting similarity among these four events was the location of the strongest 850-hPa winds northwest of the region, with a rapidly decreasing speed gradient observed over the mountains. These 850-hPa winds northwest of the mountains were also stronger than the 700-hPa winds in the region. It was hypothesized that strong low-level divergence developed in the foothills, as the stronger 850-hPa winds on the western side accelerated away from the mountains while the mountains prevented a rapid return flow from the eastern side. This low-level divergence likely helped to further strengthen the mountain-wave-induced mesolow and high winds in the western foothills. A 12-yr climatology of high wind events induced by mountain waves at Cove Mountain was also constructed. This climatology revealed that these events occurred primarily at night between November and March. Composite maps of mountain-wave events that produced warning-level and advisory-level winds revealed that an axis of stronger 850-hPa winds was typically located west of the mountains (away from the foothills). This finding (using reanalysis data instead of model data) further suggested that low-level divergence normally contributed to the intensity of mountain-wave-induced mesolows and winds in the western foothills of the southern Appalachian Mountains.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3