The most sensitive initial error of sea surface height anomaly forecasts and its implication for target observations of mesoscale eddies

Author:

Abstract

Abstract We used the conditional nonlinear optimal perturbation (CNOP) approach to investigate the most sensitive initial error of sea surface height anomaly (SSHA) forecasts by using a two-layer quasigeostrophic model and revealed the importance of mesoscale eddies in initialization of the SSHA forecasts. Then, the CNOP-type initial errors for individual mesoscale eddies were calculated, revealing that the errors tend to occur in locations where the eddies present a clear high-to low-velocity gradient along the eddy rotation and the errors often have a shear SSHA structure present. Physically, we interpreted the rationality of the particular location and shear structure of the CNOP-type errors by barotropic instability from the perspective of the Lagrange expression of fluid motions. Numerically, we examined the sensitivity of the CNOP-type errors by using observing system simulation experiments (OSSEs). We concluded that if additional observations are preferentially implemented in the location where CNOP-type errors occur, especially with a particular array indicated by their shear structure, the forecast ability of the SSHA can be significantly improved. These results provide scientific guidance for the target observation of mesoscale eddies and therefore are very instructive for improving ocean state SSHA forecasts.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3