Effects of Stratification on Shoaling Internal Tidal Bores

Author:

Dauhajre Daniel P.1,Molemaker M. Jeroen1,McWilliams James C.1,Hypolite Delphine1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles

Abstract

AbstractIdealized simulations of a shoaling internal tide on a gently sloping, linear shelf provide a tool to investigate systematically the effects of stratification strength, vertical structure, and internal wave amplitude on internal tidal bores. Simulations that prescribe a range of uniform or variable stratifications and wave amplitudes demonstrate a variety of internal tidal bores characterized by shoreward propagating horizontal density fronts with associated overturning circulations. Qualitatively, we observe three classes of solution: 1) bores, 2) bores with trailing wave trains, and 3) no bores. Very strong stratification (small wave) or very weak stratification (large wave) inhibits bore formation. Bores exist in an intermediate zone of stratification strength and wave amplitude. Within this intermediate zone, wave trains can trail bores if the stratification is relatively weak or wave amplitude large. We observe three types of bore that arise dependent on the vertical structure of stratification and wave amplitude: 1) a ‘backward’ downwelling front (near uniform stratification, small to intermediate waves), 2) a ‘forward’ upwelling front (strong pycnocline, small to large waves), and 3) a ‘double’ bore with leading up and trailing downwelling front (intermediate pycnocline, intermediate to large waves). Visualization of local flow structures explores the evolution of each of these bore-types. A frontogenetic diagnostic framework elucidates the previously undiscussed, yet, universal role of vertical straining of a stratified fluid that initiates formation of bores. Bores with wave trains exhibit strong non-hydrostatic dynamics. The results of this study suggest that mid-to-outer shelf measurements of stratification and cross-shore flow can serve as proxies to indicate the class of bore further inshore.

Publisher

American Meteorological Society

Subject

Oceanography

Reference130 articles.

1. Breaking of shoaling internal solitary waves;Aghsaee;J. Fluid Mech.,2010

2. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization;Large;Rev. Geophys.,1994

3. Internal wave breaking at concave and convex continental slopes;Legg;J. Phys. Oceanogr.,2003

4. Two-dimensional ageostrophic secondary circulations at ocean fronts due to vertical mixing and large-scale deformation;Nagai;J. Geophys. Res.,2006

5. River plumes as a source of large-amplitude internal waves in the coastal ocean;Nash;Nature,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3