Transition from Balanced to Unbalanced Motion in the Eastern Tropical Pacific

Author:

Soares Saulo M.1,Gille Sarah T.1,Chereskin Teresa K.1,Firing Eric2,Hummon Jules2,Rocha Cesar B.3

Affiliation:

1. a Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. b Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

3. c Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Abstract

Abstract Kinetic energy associated with inertia–gravity waves (IGWs) and other ageostrophic phenomena often overwhelms kinetic energy due to geostrophic motions for wavelengths on the order of tens of kilometers. Understanding the dependencies of the wavelength at which balanced (geostrophic) variability ceases to be larger than unbalanced variability is important for interpreting high-resolution altimetric data. This wavelength has been termed the transition scale. This study uses acoustic Doppler current profiler (ADCP) data along with auxiliary observations and a numerical model to investigate the transition scale in the eastern tropical Pacific and the mechanisms responsible for its regional and seasonal variations. One-dimensional kinetic energy wavenumber spectra are separated into rotational and divergent components, and subsequently into vortex and wave components. The divergent motions, most likely predominantly IGWs, account for most of the energy at wavelengths less than 100 km. The observed regional and seasonal patterns in the transition scale are consistent with those from a high-resolution global simulation. Observations, however, show weaker seasonality, with only modest wintertime increases in vortex energy. The ADCP-inferred IGW wavenumber spectra suggest that waves with near-inertial frequency dominate the unbalanced variability, while in model output, internal tides strongly influence the wavenumber spectrum. The ADCP-derived transition scales from the eastern tropical Pacific are typically in the 100–200-km range.

Publisher

American Meteorological Society

Subject

Oceanography

Reference45 articles.

1. : Frequency dependence and vertical structure of ocean surface kinetic energy from global high-resolution models and surface drifter observations;Arbic, B. K.,2022

2. Random Data: Analysis and Measurement Procedures;Bendat, J.,2010

3. Uniform potential vorticity flow: Part II: A model of wave interactions;Blumen, W.,1978

4. Mixed layer instabilities and restratification;Boccaletti, G.,2007

5. Variability and sources of the internal wave continuum examined from global moored velocity records;Boyer, A. L.,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3