The physics of ocean wave evolution within tropical cyclones

Author:

Tamizi Ali1,Alves Jose-Henrique2,Young Ian R.1

Affiliation:

1. a Department of Infrastructure Engineering, The University of Melbourne, Vic 3010, Australia.

2. b Weather Program Office, NOAA Research, Silver Spring, MD, USA

Abstract

AbstractA series of numerical experiments with the WAVEWATCH III spectral wave model are used to investigate the physics of wave evolution in tropical cyclones. Buoy observations show that tropical cyclone wave spectra are directionally skewed with a continuum of energy between locally generated wind-sea and remotely generated waves. These systems are often separated by more than 900. The model spectra are consistent with the observed buoy data and are shown to be governed by nonlinear wave-wave interactions which result in a cascade of energy from the wind-sea to the remotely generated spectral peak. The peak waves act in a “parasitic” manner taking energy from the wind-sea to maintain their growth. The critical role of nonlinear processes explains why one-dimensional tropical cyclone spectra have characteristics very similar to fetch-limited waves, even though the generation system is far more complex. The results also provide strong validation of the critical role nonlinear interactions play in wind-wave evolution.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3