Stirring of interior potential vorticity gradients as a formation mechanism for large subsurface-intensified eddies in the Beaufort Gyre

Author:

Manucharyan Georgy E.1,Stewart Andrew L.2

Affiliation:

1. 1 School of Oceanography, University of Washington, Seattle, Washington

2. 2 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California

Abstract

Abstract The Beaufort Gyre (BG) is hypothesized to be partially equilibrated by those mesoscale eddies that form via baroclinic instabilities of its currents. However, our understanding of the eddy field’s dependence on the mean BG currents and the role of sea ice remains incomplete. This theoretical study explores the scales and vertical structures of eddies forming specifically due to baroclinic instabilities of interior BG flows. An idealized quasi-geostrophic model is used to show that flows driven only by the Ekman pumping contain no interior potential vorticity (PV) gradients and generate weak and large eddies, ℴ(200km) in size, with predominantly barotropic and first baroclinic mode energy. However, flows containing realistic interior PV gradients in the Pacific halocline layer generate significantly smaller eddies of about 50 km in size, with a distinct second baroclinic mode structure and a subsurface kinetic energy maximum. The dramatic change in eddy characteristics is shown to be caused by the stirring of interior PV gradients by large-scale barotropic eddies. The sea ice-ocean drag is identified as the dominant eddy dissipation mechanism, leading to realistic sub-surface maxima of eddy kinetic energy for drag coefficients higher than about 2×10−3. A scaling law is developed for the eddy potential enstrophy, demonstrating that it is directly proportional to the interior PV gradient and the square root of the barotropic eddy kinetic energy. This study proposes a possible formation mechanism of large BG eddies and points to the importance of accurate representation of the interior PV gradients and eddy dissipation by ice-ocean drag in BG simulations and theory.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3