The Redistribution of Air–Sea Momentum and Turbulent Kinetic Energy Fluxes by Ocean Surface Gravity Waves

Author:

Wu Lichuan1ORCID,Breivik Øyvind23,Qiao Fangli456

Affiliation:

1. a Department of Earth Sciences, Uppsala University, Uppsala, Sweden

2. c Norwegian Meteorological Institute, Bergen, Norway

3. d University of Bergen, Bergen, Norway

4. b Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China

5. e First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China

6. f Shandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China

Abstract

Abstract The momentum flux to the ocean interior is commonly assumed to be identical to the momentum flux lost from the atmosphere in traditional atmosphere, ocean, and coupled models. However, ocean surface gravity waves (hereafter waves) can alter the magnitude and direction of the ocean-side stress (τoc) from the air-side stress (τa). This is rarely considered in coupled climate and forecast models. Based on a 30-yr wave hindcast, the redistribution of the global wind stress and turbulent kinetic energy (TKE) flux by waves was investigated. Waves play a more important role in the windy oceans in middle and high latitudes than that in the oceans in the tropics (i.e., the central portion of the Pacific and Atlantic Oceans). On average, the relative difference between τoc and τa, γτ, can be up to 6% in middle and high latitudes. The frequency of occurrence of γτ > 9% can be up to 10% in the windy extratropics. The directional difference between τoc and τa exceeds 3.5° in the middle and high latitudes 10% of the time. The difference between τoc and τa becomes more significant closer to the coasts of the continents due to strong wind gradients. The friction velocity-based approach overestimates (underestimates) the breaking-induced TKE flux in the tropics (middle and high latitudes). The findings presented in the current study show that coupled climate and Earth system models would clearly benefit from the inclusion of a wave model. Significance Statement The purpose of this study is to investigate the redistribution of the global wind stress and turbulent kinetic energy flux due to surface waves based on a 30-yr wave hindcast. The mean relative difference of the magnitude between the air-side and ocean-side stress is up to 6% with a 90th percentile of more than 9% in the windy extratropics. Due to strong wind gradients, the redistributive role of waves in the stress becomes more significant closer to coasts. The results indicate that we should consider the redistributive role of waves in the momentum and energy fluxes in climate and Earth system models since they are the key elements in the predictability of weather forecasting models and climate models.

Funder

Svenska Forskningsrådet Formas

Qingdao National Laboratory for Marine Science and Technology

CMEMS

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3