Effects of Smooth Divergence-Free Flows on Tracer Gradients and Spectra: Eulerian Prognosis Description

Author:

Abstract

Abstract Ocean eddies play an important role in the transport of heat, salt, nutrients, or pollutants. During a finite-time advection, the gradients of these tracers can increase or decrease, depending on a growth rate and the angle between flow gradients and initial tracer gradients. The growth rate is directly related to finite-time Lyapunov exponents. Numerous studies on mixing and/or tracer downscaling methods rely on satellite altimeter-derived ocean velocities. Filtering most oceanic small-scale eddies, the resulting smooth Eulerian velocities are often stationary during the characteristic time of tracer gradient growth. While smooth, these velocity fields are still locally misaligned, and thus uncorrelated, to many coarse-scale tracer observations amendable to downscaling [e.g., sea surface temperature (SST), sea surface salinity (SSS)]. Using finite-time advections, the averaged squared norm of tracer gradients can then only increase, with local growth rate independent of the initial coarse-scale tracer distribution. The key mixing processes are then only governed by locally uniform shears and foldings around stationary convective cells. To predict the tracer deformations and the evolution of their second-order statistics, an efficient proxy is proposed. Applied to a single velocity snapshot, this proxy extends the Okubo–Weiss criterion. For the Lagrangian-advection-based downscaling methods, it further successfully predicts the evolution of tracer spectral energy density after a finite time, and the optimal time to stop the downscaling operation. A practical estimation can then be proposed to define an effective parameterization of the horizontal eddy diffusivity. Significance Statement An analytical formalism is adopted to derive new exact and approximate relations that express the clustering of tracers transported by upper-ocean flows. This formalism bridges previous Eulerian and Lagrangian approaches. Accordingly, for slow and smooth upper-ocean flows, a rapid prognosis estimate can solely be performed using single-time velocity field observations. Well suited to satellite-altimeter measurements, it will help rapidly identify and monitor mixing regions occurring in the vicinity of ocean eddy boundaries.

Funder

h2020 european research council

european space agency

laboratoires d’excellence cominlabs, lebesgue and mer

Publisher

American Meteorological Society

Subject

Oceanography

Reference82 articles.

1. Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data;Lehahn;J. Geophys. Res.,2007

2. Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity;Batchelor;J. Fluid Mech.,1959

3. andG Objective coherent structures https org;Serra;Chaos,2016

4. Surface quasi-geostrophic dynamics;Held;J. Fluid Mech.,1995

5. Lagrangian coherent structures and mixing in two-dimensional turbulence;Haller;Physica D,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3