Middepth Zonal Velocity in the Southern Tropical Indian Ocean: Striation-Like Structures and Their Dynamics

Author:

Xia Yifan1ORCID,Du Yan123

Affiliation:

1. a State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

2. b Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

3. c University of Chinese Academy of Sciences, Beijing, China

Abstract

Abstract In this study, the upper-ocean absolute geostrophic currents in the southern Indian Ocean are constructed using Argo temperature and salinity data from the middepth (1000 m) zonal velocity derived from the Argo float trajectory. The results reveal alternating quasi-zonal striation-like structures of middepth zonal velocity in the equatorial and southern tropical Indian Ocean. Specifically, the eastward time-mean flows are located at the equator and 2°, 5°, 8°, 13°, 16°, 18°–19°, and 21°–22°S, with a meridional scale of ∼300 km. The generation mechanisms of the striation-like zonal velocity structure differ between the near-equatorial and off-equatorial regions. The triad of baroclinic Rossby wave instability plays a significant role in near-equatorial striations. In the south, the high potential vorticity (PV) of Antarctic intermediate water and low PV of southern Indian Ocean Subantarctic Mode Water lead to strong baroclinic instability, which increases the eddy kinetic energy in the middepth layer, thus contributing to a turbulent PV gradient. The convergence/divergence of the eddy PV flux generates the quasi-zonal striations. The meridional scale of the striations is controlled by the most unstable wavelength of baroclinic instability, which explains the observations. Significance Statement The middepth zonal velocity resembles a system of eastward/westward jets with a considerably smaller width than the larger-scale ocean surface circulation. Such a phenomenon always occurs in a turbulent ocean that presents eddy or eddy–mean flow interactions. This study used float observations to reveal a robust middepth zonal velocity in the southern tropical Indian Ocean, where the width of the eastward time-mean flows is approximately 300 km. Smaller eddies drive the zonal currents with a smaller width, and the energy of the eddies is released from the unstable vertical structure at middepths. This study provides new insights into the generation mechanism of small-width zonal current structures in the deep ocean.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Independent Research Project Program of the State Key Laboratory of Tropical Oceanography

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3