Across-Shore Propagation of Subthermocline Eddies in the California Current System

Author:

Abstract

Abstract Though subthermocline eddies (STEs) have often been observed in the world oceans, characteristics of STEs such as their patterns of generation and propagation are less understood. Here, the across-shore propagation of STEs in the California Current System (CCS) is observed and described using 13 years of sustained coastal glider measurements on three glider transect lines off central and southern California as part of the California Underwater Glider Network (CUGN). The across-shore propagation speed of anticyclonic STEs is estimated as 1.35–1.49 ± 0.33 cm s−1 over the three transects, line 66.7, line 80.0, and line 90.0, close to the westward long first baroclinic Rossby wave speed in the region. Anticyclonic STEs are found with high salinity, high temperature, and low dissolved oxygen anomalies in their cores, consistent with transporting California Undercurrent water from the coast to offshore. Comparisons to satellite sea level anomaly indicate that STEs are only weakly correlated to a sea surface height expression. The observations suggest that STEs are important for the salt balance and mixing of water masses across-shore in the CCS.

Funder

National Defense Science and Engineering Graduate

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Oceanography

Reference104 articles.

1. On the evolution of isolated, nonlinear vortices;McWilliams;J. Phys. Oceanogr.,1979

2. andA Random Data Procedures;Bendat;Analysis Measurement,2011

3. Topographic generation of submesoscale centrifugal instability and energy dissipation;Gula;Nat. Commun.,2016

4. Meddy dynamics and interaction with neighboring eddies southwest of Portugal: Observations and modeling;Carton;J. Geophys. Res.,2010

5. Submesoscale coherent vortices in the Gulf Stream;Gula;Geophys. Res. Lett.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3