Revisiting the Ocean’s Nonisostatic Response to 5-Day Atmospheric Loading: New Results Based on Global Bottom Pressure Records and Numerical Modeling

Author:

Thomson Richard E.1,Fine Isaac V.1

Affiliation:

1. a Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, British Columbia, Canada

Abstract

AbstractWe use bottom pressure records from 59 sites of the global tsunami warning system to examine the nonisostatic response of the World Ocean to surface air pressure forcing within the 4–6-day band. It is within this narrow “5-day” band that sea level fluctuations strongly depart from the isostatic inverted barometer response. Numerical simulations of the observed bottom pressures were conducted using a two-dimensional Princeton Ocean Model forced at the upper boundary by two versions of the air pressure loading: (i) an analytical version having the form of the westward propagating, 5-day Rossby–Haurwitz air pressure mode; and (ii) an observational version based on a 16-yr record of global-scale atmospheric reanalysis data with a spatial resolution of 2.5°. Simulations from the two models—consisting of barotropic standing waves of millibar amplitudes and near uniform phases in the Pacific, Atlantic, and Indian Oceans—are in close agreement and closely reproduce the observed bottom pressures. The marked similarity of the outputs from the two models and the ability of both models to accurately reproduce the seafloor pressure records indicate a pronounced dynamic response of the World Ocean to nonstationary air pressure fields resembling the theoretical Rossby–Haurwitz air pressure mode.

Publisher

American Meteorological Society

Subject

Oceanography

Reference48 articles.

1. Observations of equatorially trapped waves in Pacific sea level variations;Wunsch;Deep-Sea Res.,1976

2. Atmosphere - Academic;Gill;Ocean Dynamics,1982

3. Further evidence of global-scale, 5-day pressure waves;Madden;J. Atmos. Sci.,1972

4. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data;Egbert;Nature,2000

5. DARTVR tsunameter retrospective and real-time data: A reflection on 10 years of processing in support of tsunami research and operations;Mungov;Pure Appl. Geophys.,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3