Observations of River Plume Mixing in the Surf Zone

Author:

Kastner S. E.1,Horner-Devine A. R.2,Thomson J. M.3,Giddings S. N.4

Affiliation:

1. a Department of Environmental Science, Western Washington University, Bellingham, Washington

2. b Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

3. c Applied Physics Laboratory, University of Washington, Seattle, Washington

4. d Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract We use salinity observations from drifters and moorings at the Quinault River mouth to investigate mixing and stratification in a surf-zone-trapped river plume. We quantify mixing based on the rate of change of salinity DS/Dt in the drifters’ quasi-Lagrangian reference frame. We estimate a constant value of the vertical eddy diffusivity of salt of Kz = (2.2 ± 0.6) × 10−3 m2 s−1, based on the relationship between vertically integrated DS/Dt and stratification, with values as high as 1 × 10−2 m2 s−1 when stratification is low. Mixing, quantified as DS/Dt, is directly correlated to surf-zone stratification, and is therefore modulated by changes in stratification caused by tidal variability in freshwater volume flux. High DS/Dt is observed when the near-surface stratification is high and salinity gradients are collocated with wave-breaking turbulence. We observe a transition from low stratification and low DS/Dt at low tidal stage to high stratification and high DS/Dt at high tidal stage. Observed wave-breaking turbulence does not change significantly with stratification, tidal stage, or offshore wave height; as a result, we observe no relationship between plume mixing and offshore wave height for the range of conditions sampled. Thus, plume mixing in the surf zone is altered by changes in stratification; these are due to tidal variability in freshwater flux from the river and not wave conditions, presumably because depth-limited wave breaking causes sufficient turbulence for mixing to occur during all observed conditions. Significance Statement River outflows are important sources of pollutants, sediment, and nutrients to the coastal ocean. Small rivers often meet large breaking waves in the surf zone close to shore, trapping river water and river-borne material near the beach. Such trapped material can influence coastal public health, beach morphology, and nearshore ecology. This study investigates how trapped fresh river water mixes with salty ocean water in the presence of large breaking waves by using high-resolution measurements of waves, salinity, and turbulence. We find that the surf zone is often fresh and stratified, which could have significant implications for the fate of riverine material. Wave breaking provides a constant source of turbulence, and the amount of mixing is limited by the degree of vertical salt stratification; more mixing occurs when stratification is higher.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Reference76 articles.

1. On the dynamics of the mouth of Columbia River: Results from a three-dimensional fully coupled wave-current interaction model;Akan, Ç.,2017

2. Battjes, J. A., and J. P. F. M. Janssen, 1978: Energy loss and set-up due to breaking of random waves. 16th Int. Conf. on Coastal Engineering, Hamburg, Germany, American Society of Civil Engineers, 32 pp., https://doi.org/10.1061/9780872621909.034.

3. Shear instabilities of the mean longshore current: 1. Theory;Bowen, A. J.,1989

4. Role of mixing in the structure and evolution of a buoyant discharge plume;Chen, F.,2006

5. Cross-shore surfzone tracer dispersion in an alongshore current;Clark, D. B.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3