Winter Convective Mixing in the northern Arabian Sea during Contrasting Monsoons

Author:

Abstract

Abstract Along-track Argo observations in the northern Arabian Sea during 2017 – 19 showed by far the most contrasting winter convective mixing; 2017 – 18 was characterized by less intense convective mixing resulting in a mixed layer depth of 110 m, while 2018 – 19 experienced strong and prolonged convective mixing with the mixed layer deepening to 150 m. The response of the mixed layer to contrasting atmospheric forcing and the associated formation of Arabian Sea High Salinity Water (ASHSW) in the northeastern Arabian Sea are studied using a combination of Argo float observations, gridded observations, a data assimilative general circulation model and a series of 1-D model simulations. The 1-D model experiments show that the response of winter mixed layer to atmospheric forcing is not only influenced by winter surface buoyancy loss, but also by a preconditioned response to freshwater fluxes and associated buoyancy gain by the ocean during the summer that is preceding the following winter. A shallower and short-lived winter mixed layer occurred during 2017 – 18 following the exceptionally high precipitation over evaporation during the summer monsoon in 2017. The precipitation induced salinity stratification (a salinity anomaly of -0.7 psu) during summer inhibited convective mixing in the following winter resulting in a shallow winter mixed layer (103 m). Combined with weak buoyancy loss due to weaker surface heat loss in the northeastern Arabian Sea, this caused an early termination of the convective mixing (February 26, 2018). In contrast, the winter convective mixing during 2018 – 19 was deeper (143 m) and long-lived. The 2018 summer, by comparison, was characterized by normal or below normal precipitation which generated a weakly stratified ocean pre-conditioned to winter mixing. This combined with colder and drier air from the land mass to the north with low specific humidity lead to strong buoyancy loss, and resulted in prolonged winter convective mixing through March 25, 2019.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3