Coastal Trapped Waves: Normal Modes, Evolution Equations, and Topographic Generation

Author:

Kelly Samuel M.1,Ogbuka Sebastine1

Affiliation:

1. a Large Lakes Observatory and Physics and Astronomy Department, University of Minnesota Duluth, Duluth, Minnesota

Abstract

Abstract Coastal trapped waves (CTWs) transport energy along coastlines and drive coastal currents and upwelling. CTW modes are nonorthogonal when frequency is treated as the eigenvalue, preventing the separation of modal energy fluxes and quantification of longshore topographic scattering. Here, CTW modes are shown to be orthogonal with respect to energy flux (but not energy) when the longshore wavenumber is the eigenvalue. The modal evolution equation is a simple harmonic oscillator forced by longshore bathymetric variability, where downstream distance is treated like time. The energy equation includes an expression for modal topographic scattering. The eigenvalue problem is carefully discretized to produce numerically orthogonal modes, allowing CTW amplitudes, energy fluxes, and generation to be precisely quantified in numerical simulations. First, a spatially uniform K1 longshore velocity is applied to a continental slope with a Gaussian bump in the coastline. Mode-1 CTW generation increases quadratically with the amplitude of the bump and is maximum when the bump’s length of coastline matches the natural wavelength of the CTW mode, as predicted by theory. Next, a realistic K1 barotropic tide is applied to the Oregon coast. The forcing generates mode-1 and mode-2 CTWs with energy fluxes of 6 and 2 MW, respectively, which are much smaller than the 80 MW of M2 internal-tide generation in this region. CTWs also produce 1-cm sea surface displacements along the coast, potentially complicating the interpretation of future satellite altimetry. Prospects and challenges for quantifying the global geography of CTWs are discussed.

Publisher

American Meteorological Society

Subject

Oceanography

Reference47 articles.

1. Models of wind-driven currents on the continental shelf;Allen, J. S.,1980

2. Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

3. Energy conservation in coastal-trapped wave calculations;Brink, K. H.,1989

4. Coastal-trapped waves and wind-driven currents over the continental shelf;Brink, K. H.,1991

5. Coastal-trapped waves with finite bottom friction;Brink, K. H.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3