The MSG Global Instability Indices Product and Its Use as a Nowcasting Tool

Author:

Koenig Marianne1,de Coning Estelle2

Affiliation:

1. EUMETSAT, Darmstadt, Germany

2. South African Weather Service, Pretoria, South Africa

Abstract

Abstract The European geostationary Meteosat Second Generation (MSG) satellite offers a variety of channels to use for various purposes, including nowcasting of convection. A number of applications have also been developed to make use of these new capabilities for nowcasting, especially for the detection and prediction of severe weather. The MSG infrared channel selection makes it possible to assess the air stability in preconvective, that is, still cloud-free, conditions. Instability indices are traditionally derived from radiosonde profiles. Such indices typically combine measures of the thermal and moisture properties and often only use a small quantity of vertical profile parameters. MSG-based temperature and moisture retrievals are used for the derivation of stability indices, which are a part of the MSG meteorological products derived centrally at the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Such indices are of an empirical nature, are often only applicable to certain geographic regions, and their thresholds are dependent on seasonal variation, but they can assess the likelihood of convection within the next few hours, thus providing a warning lead of about 6–9 h. Numerous test cases and the more quantitative verification process that was initiated by the South African Weather Service show the generally good warning potential of the derived instability fields. The added capability of a nearly continuous monitoring of the instability fields that is guaranteed by MSG’s 15-min repeat cycle is most valuable, since it provides nowcasters with new information much more regularly than the twice-a-day soundings at only a limited number of radiosonde stations. The current EUMETSAT instability product is aimed at helping forecasters to focus their attention on a certain region, which can then be monitored more closely with other means, like satellite imagery and radar data, over the next few hours.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference26 articles.

1. A comprehensive glossary of weather terms for storm spotters. NOAA Tech. Memo. NWS SR-145, NOAA/NWS/WFO Norman, Norman, OK.;Branick,2006

2. Sampled databases of 60-level atmospheric profiles from the ECMWF analyses.;Chevallier,2002

3. Total precipitable water measurements from GOES Sounder derived product imagery.;Dostalek;Wea. Forecasting,2001

4. Report of the Seventh EUMETSAT User Forum in Africa.;EUMETSAT,2006

5. A fast radiative transfer model for satellite sounding systems.;Eyre,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3