Correlations between Analyses and Forecasts of Banded Heavy Snow Ingredients and Observed Snowfall

Author:

Evans Michael1,Jurewicz Michael L.1

Affiliation:

1. National Oceanic and Atmospheric Administration/National Weather Service Forecast Office, Binghamton, New York

Abstract

Abstract North American Mesoscale (NAM) model forecasts of the occurrence, magnitude, depth, and persistence of ingredients previously shown to be useful in the diagnosis of banded and/or heavy snowfall potential are examined for a broad range of 25 snow events, with event total snowfall ranging from 10 cm (4 in.) to over 75 cm (30 in.). The ingredients examined are frontogenetical forcing, weak moist symmetric stability, saturation, and microphysical characteristics favorable for the production of dendritic snow crystals. It is shown that these ingredients, previously identified as being critical indicators for heavy and/or banded snowfall in major storms, are often found in smaller snowfall events. It is also shown that the magnitude, depth, and persistence of these ingredients, or combinations of these ingredients, appear to be good predictors of event total snowfall potential. In addition, a relationship is demonstrated between temporal trends associated with one of the ingredients (saturated, geostrophic equivalent potential vorticity) and event total snowfall. Correlations between forecast values of these ingredients and observed snowfall are shown to decrease substantially as forecast lead time increases beyond 12 h. It is hypothesized that model forecast positioning and timing errors are primarily responsible for the lower correlations associated with longer-lead forecasts. This finding implies that the best forecasts beyond 12 h may be produced by examining the diagnostics of heavy snow ingredients from a single, high-resolution model to determine snowfall potential, then using ensemble forecasting approaches to determine the most probable location and timing of any heavy snow.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference23 articles.

1. The combined role of kinematics, thermodynamics and cloud physics associated with heavy snowfall episodes.;Auer;J. Meteor. Soc. Japan,1982

2. Banacos, P. C. , 2003: Short range prediction of banded precipitation associated with deformation and frontogenetical forcing. Preprints, 10th Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., P1.7.

3. Conditional symmetric instability—A possible explanation of frontal rain bands.;Bennetts;Quart. J. Roy. Meteor. Soc.,1979

4. An analysis of a frontogenetically forced early spring snowstorm.;Evans;Bull. Amer. Meteor. Soc.,2006

5. Nonparametric Methods for Quantitative Analysis.;Gibbons,1976

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3