Rapid Sampling of Severe Storms by the National Weather Radar Testbed Phased Array Radar

Author:

Heinselman Pamela L.1,Priegnitz David L.1,Manross Kevin L.1,Smith Travis M.1,Adams Richard W.1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract A key advantage of the National Weather Radar Testbed Phased Array Radar (PAR) is the capability to adaptively scan storms at higher temporal resolution than is possible with the Weather Surveillance Radar-1988 Doppler (WSR-88D): 1 min or less versus 4.1 min, respectively. High temporal resolution volumetric radar data are a necessity for rapid identification and confirmation of weather phenomena that can develop within minutes. The purpose of this paper is to demonstrate the PAR’s ability to collect rapid-scan volumetric data that provide more detailed depictions of quickly evolving storm structures than the WSR-88D. Scientific advantages of higher temporal resolution PAR data are examined for three convective storms that occurred during the spring and summer of 2006, including a reintensifying supercell, a microburst, and a hailstorm. The analysis of the reintensifying supercell (58-s updates) illustrates the capability to diagnose the detailed evolution of developing and/or intensifying areas of 1) low-altitude divergence and rotation and 2) rotation through the depth of the storm. The fuller sampling of the microburst’s storm life cycle (34-s updates) depicts precursors to the strong surface outflow that are essentially indiscernible in the WSR-88D data. Furthermore, the 34-s scans provide a more precise sampling of peak outflow. The more frequent sampling of the hailstorm (26-s updates) illustrates the opportunity to analyze storm structures indicative of rapid intensification, the development of hail aloft, and the onset of the downdraft near the surface.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

1. Interpretation of single-Doppler radar signatures in a V-shaped hailstorm: Part 1–Evolution of reflectivity-based features.;Brown;Natl. Wea. Dig.,2003

2. New WSR-88D volume coverage pattern 12: Results of field tests.;Brown;Wea. Forecasting,2005

3. Burgess, D. W. , 2004: High resolution analyses of the 8 May 2003 Oklahoma City storm, Part I: Storm structure and evolution from radar data. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 12.4. [Available online at http://ams.confex.com/ams/pdfpapers/81939.pdf.].

4. Burgess, D. W., and M. A.Magsig, 1993: Evolution of the Red Rock, Oklahoma supercell of April 26, 1991. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 257–261.

5. Burgess, D. W., and M. A.Magsig, 1998: Recent observations of tornado development at near range to WSR-88D radars. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 756–759.

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3