Frozen Soil Advances the Effect of Spring Snow Cover Anomalies on Subsequent Precipitation over the Tibetan Plateau

Author:

Yang Kai1,Wang Chenghai1ORCID

Affiliation:

1. a Key Laboratory of Arid Climate Resource and Environment of Gansu Province (ACRE), Research and Development Center of Earth System Model (RDCM), College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Abstract

Abstract Frozen soil distributed over alpine cold regions causes obvious changes in the soil hydrothermal regime and influences the water–heat exchanges between land and atmosphere. In this study, by comparing the effects of snow cover anomalies and frozen soil thawing anomalies on the soil hydrothermal regime, the impact of the frozen soil thawing anomalies in spring on precipitation in early summer over the Tibetan Plateau (TP) was investigated via diagnostic analysis and model simulations. The results show that a delay (advance) in the anomalies of frozen soil thawing in spring can induce distinct cold (warm) anomalies in the soil temperature in the eastern TP. These soil temperature cold (warm) anomalies further weaken (enhance) the surface diabatic heating over the mideastern TP; meanwhile, the anomalies in the western TP are inconspicuous. Compared to the albedo effect of snow cover anomalies, impacts of frozen soil thawing anomalies on soil hydrothermal regime and surface diabatic heating can persist longer from April to June. Corresponding to the anomalous delay (advance) of frozen soil thawing, the monsoon cell is weakened (enhanced) over the southern and northern TP, resulting in less (more) water vapor advection over the eastern TP and more (less) water vapor advection over the southwestern TP. This difference in water vapor advection induces a west–east reversed pattern of precipitation anomalies in June over the TP. The results have potential for improving our understanding of the interactions between the cryosphere and climate in cold regions. Significance Statement Frozen soil and snow are widely distributed over alpine and high-latitude cold regions, and their feedbacks to climate have attracted much attention. The purpose of this study is to investigate the role of frozen soil in effects of snow cover anomalies on surface diabatic heating and its feedback to subsequent precipitation over the Tibetan Plateau. The results highlight that frozen soil modulates the effect of snow cover anomalies on the soil hydrothermal regime from April to June and interseasonal variations of frozen soil thawing anomaly zones result in a thermal contrast between the western and eastern Tibetan Plateau, which further lead to a reversed pattern of early summer precipitation anomalies over the Tibetan Plateau. These findings emphasize the role of frozen soil in land–atmosphere interactions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference79 articles.

1. Soil moisture-precipitation feedback processes in the Indian summer monsoon season;Asharaf, S.,2012

2. The effect of Eurasian snow cover on regional and global climate variations;Barnett, T. P.,1989

3. Brodzik, M., and R. Armstrong, 2013: Northern Hemisphere EASE-Grid 2.0 weekly snow cover and sea ice extent, version 4. National Snow and Ice Data Center, accessed 25 September 2020, https://doi.org/10.5067/P7O0HGJLYUQU.

4. Role of land-surface changes in Arctic summer warming;Chapin, F. S.,2005

5. Che, T., and L. Dai, 2015: Long-term series of daily snow depth dataset in China (1979–2021). National Tibetan Plateau Data Center, accessed 16 February 2023, https://doi.org/10.11888/Geogra.tpdc.270194.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3