Developing a Methodology for Model Intercomparison and Its Application to Improve Simulated Streamflow by Land Surface Models

Author:

Tinumbang Aulia Febianda Anwar1ORCID,Yorozu Kazuaki1,Tachikawa Yasuto1,Ichikawa Yutaka1

Affiliation:

1. a Graduate School of Engineering, Kyoto University, Kyoto, Japan

Abstract

Abstract Runoff generated by land surface models (LSMs) is extensively used to predict future river discharge under global warming. However, the structural bias of LSMs, the precipitation bias of the climate model, and other factors could cause the runoff to be biased. A model intercomparison study can help understand LSM behavior. Traditional model intercomparison can discover output variation and evaluate performance, but explaining the reason for the difference is challenging. This study developed a novel method to identify the reasons for disparities and suggest improvements. Consequently, we investigated the impacts of model settings by adopting the settings of another model in one model until it can mimic similar features in its output. Hence, we developed a process called the “emulation model.” We employed two LSMs [Simple Biosphere with Urban Canopy (SiBUC) and Meteorological Research Institute Simple Biosphere model (MRI-SiB)] in the Thai River basin. SiBUC produced a higher surface runoff than MRI-SiB, and the development of the MRI-SiB emulation revealed the cause of this variation. The differences in runoff characteristics affected streamflow estimation. For instance, the SiBUC peak discharge was faster and higher than observed in the dry year. Conversely, there was a tendency to underestimate the flow estimated by MRI-SiB runoff during the transition from dry to wet seasons. Incorporating other model settings can alleviate the shortcomings of each model. Overall, the proposed method can identify the strengths and weaknesses of a model and enhance the reproducibility of the hydrological characteristics of the observed discharge in the basin. Significance Statement This study aims to develop a new methodology for model intercomparison to identify the reasons for model output variation. Understanding why models behave differently is important to enhancing the reliability of model prediction. Our findings guide what affects disparities in land surface model runoff-based streamflow estimation, which will help reduce the uncertainty of future flood and drought predictions.

Funder

Integrated Research Program for Advancing Climate Models (TOUGOU) Theme C and D

MEXT Program for the Advanced Studies of climate change projection

Moonshot Research and Development Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference33 articles.

1. Intercomparison of land surface process modelling in Asian drylands;Asanuma, J.,2013

2. The plumbing of land surface models: Benchmarking model performance;Best, M. J.,2015

3. The Rhône-aggregation land surface scheme intercomparison project: An overview;Boone, A.,2004

4. The AMMA Land Surface Model Intercomparison Project (ALMIP);Boone, A.,2009

5. Empirical equations for some soil hydraulic properties;Clapp, R. B.,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3