Evaluating Root-Zone Soil Moisture Products from GLEAM, GLDAS, and ERA5 Based on In Situ Observations and Triple Collocation Method over the Tibetan Plateau

Author:

Yang Siqi12ORCID,Zeng Jiangyuan3,Fan Wenjie12,Cui Yaokui12

Affiliation:

1. a School of Earth and Space Sciences, Institute of Remote Sensing and Geographic Information System, Peking University, Beijing, China

2. b Beijing Key Laboratory of Spatial Information Integration and Its Application, Peking University, Beijing, China

3. c State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract Root-zone soil moisture (RZSM) is an important variable in land–atmosphere interactions, notably affecting the global climate system. Contrary to satellite-based acquisition of surface soil moisture, RZSM is generally obtained from model-based simulations. In this study, in situ observations from the Naqu and Pali networks that represent different climatic conditions over the Tibetan Plateau (TP) and a triple collocation (TC) method are used to evaluate model-based RZSM products, including Global Land Evaporation Amsterdam Model (GLEAM) (versions 3.5a and 3.5b), Global Land Data Assimilation System (GLDAS) (versions 2.1 and 2.2), and the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis (ERA5). The evaluation results based on in situ observations indicate that all products tend to overestimate but could generally capture the temporal variation, and ERA5 exhibits the best performance with the highest R (0.875) and the lowest unbiased RMSE (ubRMSE; 0.015 m3 m−3) against in situ observations in the Naqu network. In the TC analysis, similar results are obtained: ERA5 has the best performance with the highest TC-derived R (0.785) over the entire TP, followed by GLEAM v3.5a (0.746) and GLDAS-2.1 (0.682). Meanwhile, GLEAM v3.5a and GLDAS-2.1 outperform GLEAM v3.5b and GLDAS-2.2 over the entire TP, respectively. Besides, possible error causes in evaluating these RZSM products are summarized, and the effectiveness of TC method is also evaluated with two dense networks, finding that TC method is reliable since TC-derived R is close to ground-derived R, with only 6.85% mean relative differences. These results using both in situ observations and TC method may provide a new perspective for the soil moisture product developers to further enhance the accuracy of model-based RZSM over the TP. Significance Statement The purpose of this study is to better understand the quality and applicability of GLEAM, GLDAS, and ERA5 RZSM products over the TP using both in situ observations and the triple collocation (TC) method, making it better applied to climate and hydrological research. This study provides four standard statistical metrics evaluation based on in situ observations, as well as the reliable metric, that is, correlation coefficient (R) derived from TC method, and highlights that TC-based evaluation could supplement the ground-based validation, especially over the data-scarce TP region.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3