Developing Impacts-Based Drought Thresholds for Ohio

Author:

Zhang Ning12,Li Zhiying13,Quiring Steven M.1

Affiliation:

1. a Department of Geography, The Ohio State University, Columbus, Ohio

2. b Agriculture and Natural Resources, University of California, Davis, Davis, California

3. c Department of Geography, Dartmouth College, Hanover, New Hampshire

Abstract

Abstract Drought monitoring is critical for managing agriculture and water resources and for triggering state emergency response plans and hazard mitigation activities. Fixed thresholds serve as guidelines for the U.S. Drought Monitor (USDM). However, fixed drought thresholds (i.e., using the same threshold in all seasons and climate regions) may not properly reflect local conditions and impacts. Therefore, this study develops impacts-based drought thresholds that are appropriate for drought monitoring in Ohio. We examined four drought indices that are currently used by the state of Ohio: standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), Palmer’s Z index, and Palmer hydrological drought index (PHDI). Streamflow and corn yield are used as indicators of hydrological and agricultural drought impacts, respectively. Our results show that fixed thresholds tend to indicate milder drought conditions in Ohio, while the proposed impacts-based drought thresholds are more sensitive to exceptional drought (D4) conditions. The area percentage of D4 based on impacts-based drought thresholds is more strongly correlated with corn yield and streamflow. This study provides a methodology for developing local impacts-based drought thresholds that can be applied to other regions where long-term drought impact records exist to provide regionally representative depictions of conditions and improve drought monitoring.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference74 articles.

1. Long-run trend in agricultural yield and climatic factors in Europe;Agnolucci, P.,2020

2. Exploring the link between drought indicators and impacts;Bachmair, S.,2015

3. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring;Beguería, S.,2014

4. Investigation of variable threshold level approaches for hydrological drought identification;Beyene, B. S.,2014

5. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008;Dai, A.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3