Meteorological Driving Datasets for the U.S. Midwest and Great Lakes Region Incorporating Precipitation Gauge Undercatch Corrections

Author:

Huidobro Gonzalo1,Chiu Chun-Mei1,Byun Kyuhyun2,Hamlet Alan F.1

Affiliation:

1. a Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana

2. b Department of Environmental Engineering, Incheon National University, Incheon, South Korea

Abstract

Abstract Precipitation (P) gauge undercatch (PUC) is an important source of error when using observed meteorological datasets for hydrologic modeling studies in regions with cold and windy winters. Preliminary simulations using the Variable Infiltration Capacity (VIC) hydrological model forced with different meteorological datasets showed significant underprediction of simulated streamflow throughout the domain. A new hybrid gridded meteorological dataset at 1/16° resolution based on observed station data was assembled over the U.S. Midwest and Great Lakes region from 1915 to 2021 at a daily time step. Correction of primary station data using existing techniques is generally difficult or infeasible in the United States due to missing station metadata and lack of local wind speed (WS) measurements. We developed and tested several different postprocessing adjustment techniques using regridded WS obtained from the NCEP–NCAR reanalysis. The most effective approach corrected rain or mixed P using WS alone, and P as snow using a regressed snow-to-P ratio from a group of wind-shielded reference stations (to account for different and generally unknown snow measurement techniques). The PUC-corrected gridded products were validated against high-quality shielded stations and corrected Global Historical Climatology Network stations with in situ WS, showing good overall agreement. Observed monthly streamflow at 40 river basins was also compared to hydrologic model simulations forced by datasets with and without PUC corrections. The best PUC-corrected dataset produced improvements in streamflow simulations in at least 80% of the streamflow locations for three validation metrics (r2, Nash–Sutcliff efficiency, bias in the mean), demonstrating its value for hydrometeorological studies in the greater Midwest region. Significance Statement Many applications in hydrology require in situ precipitation (P) measurements, which are known to have a systematic low bias due to the effects of wind, also known as precipitation undercatch (PUC). Addressing PUC is problematic in the United States due to limited access to detailed station metadata (SMD) and local wind speed (WS) measurements. In this paper we develop a set of procedures to create gridded precipitation datasets for the U.S. Midwest region that incorporate corrections for PUC without needing either (i) detailed SMD or (ii) local WS measurements. Among other tests, results in 40 test basins throughout the Midwest show substantial improvements in simulated streamflow in 32 out of 40 basins when PUC corrections are included in meteorological driving datasets.

Funder

University of Notre Dame

Environmental Change Initiative

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference63 articles.

1. Adjustment of global gridded precipitation for systematic bias;Adam, J. C.,2003

2. Implications of global climate change for snowmelt hydrology in the twenty-first century;Adam, J. C.,2009

3. Hydrologic evaluation of satellite precipitation products over a mid-size basin;Behrangi, A.,2011

4. A comparison of the U.S. Climate Reference Network precipitation data to the Parameter-Elevation Regressions on Independent Slopes Model (PRISM);Buban, M. S.,2020

5. The potential for uncertainty in numerical weather prediction model verification when using solid precipitation observations;Buisán, S. T.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3