Responses of Surface Evaporative Fluxes in Montane Cloud Forests to the Climate Change Scenario

Author:

Yang Tzu-Ying1ORCID,Huang Cho-Ying2,Juang Jehn-Yih2,Chen Yi-Ying3,Cheng Chao-Tzuen4,Lo Min-Hui1

Affiliation:

1. a Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

2. b Department of Geography, National Taiwan University, Taipei, Taiwan

3. c Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

4. d National Science and Technology Center for Disaster Reduction, Taipei, Taiwan

Abstract

Abstract Fog plays a vital role in maintaining ecosystems in montane cloud forests. In these forests, a large amount of water on the surface of leaves and canopy (hereafter canopy water) evaporates during the morning. This biophysical process plays a critical factor in regulating afternoon fog formation. Recent studies have found that alterations in precipitation, temperature, humidity, and CO2 concentrations associated with future climate changes may affect terrestrial hydroclimatology, but the responses in cloud forests remain unclear. Utilizing numerical experiments with the Community Land Model, we explored changes in surface evaporative fluxes in Chi-Lan Mountain cloud forests in northeastern Taiwan under the RCP8.5 scenario with changes in the aforementioned various atmospheric variables. The results showed that increased rainfall intensity in climate change runs decreased the accumulation of canopy water, while larger water vapor concentrations led to more nighttime condensation on leaves. Elevated CO2 concentrations did not greatly impact canopy water amounts, but photosynthesis was enhanced, while transpiration was reduced and contributed to decreased latent heat fluxes, implying the importance of forest plant physiology in modulating land evaporative fluxes. Evapotranspiration decreased in Chi-Lan due to multiple combined factors, in contrast to the expected intensification in the global water cycle under global warming. The study, however, is restricted to an offline land surface model without land–atmosphere interactions and the interactions with adjacent grids, which deserves further analyses for the water cycle changes in the montane cloud forest regions.

Funder

Ministry of Science and Technology, Taiwan

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3