Patterns and Trend Analysis of Rain-on-Snow Events using Passive Microwave Satellite Data over the Canadian Arctic Archipelago Since 1987

Author:

Sasseville Vincent12ORCID,Langlois Alexandre12,Brucker Ludovic34,Johnson Cheryl Ann5

Affiliation:

1. a Centre d’Applications et Recherches en Télédétection (Cartel), Université de Sherbrooke, Quebec, Quebec, Canada

2. b Centre d’Études Nordiques, Quebec, Quebec, Canada

3. c NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland

4. d U.S. National Ice Center, Suitland, Maryland

5. e Wildlife Landscape Science Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada

Abstract

Abstract Climate change has a profound effect on Arctic meteorology extreme events, such as rain-on-snow (ROS), which affects surface state variable spatial and temporal variability. Passive microwave satellite images can help detect such events in polar regions where local meteorological and snow information is scarce. In this study, we use a detection algorithm using high-resolution passive microwave data to monitor spatial and temporal variability of ROS over the Canadian Arctic Archipelago from 1987 to 2019. The method is validated using data from several meteorological stations and atmospheric corrections have been applied to the passive microwave dataset. Our approach to detect ROS is based on two methods: 1) over a fixed time period (i.e., 1 November–31 May) throughout the study period and 2) using an a priori detection for snow presence before applying our ROS algorithm (i.e., length of studied winter varies yearly). Event occurrence is analyzed for each winter and separated by island groups of the Canadian Arctic Archipelago. Results show an increase in absolute ROS occurrence, mainly along the coasts, although no statistically significant trends are observed. Significance Statement Rain-on-snow (ROS) is known to have significant consequences on vegetation and fauna, especially widespread events. This study aimed to use a recent high-resolution dataset of passive microwave observations to investigate spatial and temporal trends in ROS occurrence in the Arctic. Results show that a global increase in event occurrence can be observed across the arctic.

Funder

Natural Sciences and Engineering Research Council of Canada

Environment and Climate Change Canada

Fonds de recherche du Québec – Nature et technologies

Publisher

American Meteorological Society

Reference35 articles.

1. Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms;Armstrong, R. L.,2002

2. Strong future increases in Arctic precipitation variability linked to poleward moisture transport;Bintanja, R.,2020

3. Brodzik, M. J., D. G. Long, M. A. Hardman, A. Paget, and R. Armstrong, 2016: MEaSUREs calibrated enhanced-resolution passive microwave daily ease-grid 2.0 brightness temperature ESDR, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 22 February 2020, https://doi.org/10.5067/measures/cryosphere/nsidc-0630.001.

4. Detection of change in the Arctic using satellite and in situ data;Comiso, J. C.,2003

5. Couture, G., 2022: Analyses spatiotemporelles des conditions de glace de mer et des tendances de formation des polynies de l’Archipel Arctique Canadien. M.S. thesis, Département de géomatique appliquée Faculté des lettres et sciences humaines, Université de Sherbrooke, 89 pp., https://savoirs.usherbrooke.ca/handle/11143/19074.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3