How Land Surface Characteristics Influence the Development of Flash Drought through the Drivers of Soil Moisture and Vapor Pressure Deficit

Author:

Lowman Lauren E. L.1ORCID,Christian Jordan I.2,Hunt Eric D.3

Affiliation:

1. a Department of Engineering, Wake Forest University, Winston-Salem, North Carolina

2. b School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. c School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska

Abstract

Abstract As global mean temperature rises, extreme drought events are expected to increasingly affect regions of the United States that are crucial for agriculture, forestry, and natural ecology. A pressing need is to understand and anticipate the conditions under which extreme drought causes catastrophic failure to vegetation in these areas. To better predict drought impacts on ecosystems, we first must understand how specific drivers, namely, atmospheric aridity and soil water stress, affect land surface processes during the evolution of flash drought events. In this study, we evaluated when vapor pressure deficit (VPD) and soil moisture thresholds corresponding to photosynthetic shutdown were crossed during flash drought events across different climate zones and land surface characteristics in the United States. First, the Dynamic Canopy Biophysical Properties (DCBP) model was used to estimate the thresholds that define reduced photosynthesis by assimilating vegetation phenology data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to a predictive phenology model. Next, we characterized and quantified flash drought onset, intensity, and duration using the standardized evaporative stress ratio (SESR) and NLDAS-2 reanalysis. Once periods of flash drought were identified, we investigated how VPD and soil moisture coevolved across regions and plant functional types. Results demonstrate that croplands and grasslands tend to be more sensitive to soil water limitations than trees across different regions of the United States. We found that whether VPD or soil moisture was the primary driver of plant water stress during drought was largely region specific. The results of this work will help to inform land managers of early warning signals relevant for specific ecosystems under threat of flash drought events.

Funder

Office of the Provost, Wake Forest University

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference77 articles.

1. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation;Anderson, M. C.,2007a

2. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology;Anderson, M. C.,2007b

3. The evolution, propagation, and spread of flash drought in the central United States during 2012;Basara, J. B.,2019

4. Plant water uptake thresholds inferred from satellite soil moisture;Bassiouni, M.,2020

5. A simple method for determining unsaturated conductivity from moisture retention data;Campbell, G. S.,1974

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3