In Situ Cloud Sensing with Multiple Scattering Lidar: Design and Validation of an Airborne Sensor

Author:

Evans K. Franklin1,O’Connor Darren2,Zmarzly Pat2,Lawson R. Paul2

Affiliation:

1. Program in Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

2. SPEC Inc., Boulder, Colorado

Abstract

Abstract The in situ cloud lidar is designed to measure cloud volumes of millions of cubic meters to overcome the sampling limitations of traditional cloud probes in inhomogeneous clouds. This technique sends laser pulses horizontally from an aircraft inside an optically thick cloud and measures the time series of the multiply scattered light with wide field-of-view detectors viewing upward and downward. The extinction in liquid clouds averaged over tens to hundreds of meters and the distance to cloud boundaries can be retrieved from the signal measured by a single-wavelength in situ lidar. This paper describes the design and operation of an in situ cloud lidar. A laser in the aircraft cabin outputs 532-nm wavelength pulses at 10 Hz, which are sent through beam-expanding optics for eye safety. The upward- and downward-viewing detectors use photomultiplier tubes and operate with either daytime (3° half angle; 0.37-nm solar-blocking filter) or nighttime (30°) optics. Example daytime lidar signals in dense cloud have a dynamic range of 1000 after solar background subtraction. Results from a nighttime flight in marine stratus are analyzed in detail. The variations in the lidar signals with aircraft travel are much smoother for the longer photon travel times, indicating that the later times sample volumes hundreds of meters in size. Extinction retrievals for 25-m-radius volumes have high correlation (R2 = 0.84) with Forward Scattering Spectrometer Probe (FSSP)-derived extinction, while the correlation is relatively low (R2 = 0.40) for 200-m volumes due to cloud inhomogeneity. Lidar retrievals of cloud-base and -top height from inside the cloud are consistent with cloud boundaries obtained from aircraft penetrations on ascents and descents.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3