Acceleration of a Stratified Current over a Sloping Bottom, Driven by an Alongshelf Pressure Gradient*

Author:

Chapman David C.1,Lentz Steven J.1

Affiliation:

1. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Abstract

Abstract An idealized theoretical model is developed for the acceleration of a two-dimensional, stratified current over a uniformly sloping bottom, driven by an imposed alongshelf pressure gradient and taking into account the effects of buoyancy advection in the bottom boundary layer. Both downwelling and upwelling pressure gradients are considered. For a specified pressure gradient, the model response depends primarily on the Burger number S = Nα/f, where N is the initial buoyancy frequency, α is the bottom slope, and f is the Coriolis parameter. Without stratification (S = 0), buoyancy advection is absent, and the alongshelf flow accelerates until bottom stress balances the imposed pressure gradient. The e-folding time scale to reach this steady state is the friction time, h/r, where h is the water depth and r is a linear bottom friction coefficient. With stratification (S ≠ 0), buoyancy advection in the bottom boundary layer produces vertical shear, which prevents the bottom stress from becoming large enough to balance the imposed pressure gradient for many friction time scales. Thus, the alongshelf flow continues to accelerate, potentially producing large velocities. The acceleration increases rapidly with increasing S, such that even relatively weak stratification (S > 0.2) has a major impact. These results are supported by numerical model calculations.

Publisher

American Meteorological Society

Subject

Oceanography

Reference29 articles.

1. Upwelling and coastal jets in a continuously stratified ocean.;Allen;J. Phys. Oceanogr.,1973

2. On the dynamics of wind-driven shelf currents.;Allen;Philos. Trans. Roy. Soc. London,1981

3. On symmetric instabilities in oceanic bottom boundary layers.;Allen;J. Phys. Oceanogr.,1998

4. Upwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing.;Allen;J. Phys. Oceanogr.,1995

5. The inner shelf response to wind-driven upwelling and downwelling.;Austin;J. Phys. Oceanogr.,2002

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3