On Weak Zonally Symmetric ENSO Atmospheric Heating and the Strong Zonally Symmetric ENSO Air Temperature Response

Author:

Clarke Allan J.1,Kim Kwang-Y.2

Affiliation:

1. Department of Oceanography, The Florida State University, Tallahassee, Florida

2. Department of Meteorology, The Florida State University, Tallahassee, Florida

Abstract

Abstract Observations show that regions of anomalous deep convective El Niño–Southern Oscillation (ENSO) heating tend to be balanced by anomalous ENSO cooling elsewhere so that, averaged around the globe from (say) 10°S to 10°N, the net anomalous heating is nearly zero. The zonally symmetric heating is weak because it is approximately proportional to vertical velocity that, when averaged over a constant pressure surface S around the earth from 10°S to 10°N, is nearly zero. The horizontally averaged vertical velocity over S is small because the net horizontal geostrophic convergent flow across 10°S and 10°N is zero. Although the zonally symmetric ENSO heating is weak, the observed ENSO tropospheric air temperature anomaly has a large zonally symmetric component. Past work has shown that with weak momentum and thermal damping, Kelvin and Rossby waves can travel around the earth without significant loss of amplitude so that a zonally symmetric response is favored. This physical interpretation depends on knowing temperature and momentum anomaly damping times over the depth of the troposphere. Such times are not well known. Here a Gill tropical atmospheric model is generalized to include realistic surface friction and so theoretically estimate a frictional spindown time. Using this spindown time (approximately 3 weeks), together with an estimate of the Newtonian cooling time (1 month) the authors show, in agreement with observations, that the extremely weak zonally symmetric heating anomaly generates a symmetric air temperature anomaly comparable to the asymmetric one.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3