20 May 2013 Moore, Oklahoma, Tornado: Damage Survey and Analysis

Author:

Burgess Donald1,Ortega Kiel1,Stumpf Greg1,Garfield Gabe1,Karstens Chris1,Meyer Tiffany1,Smith Brandon1,Speheger Doug2,Ladue Jim2,Smith Rick2,Marshall Tim3

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. National Weather Service, Norman, Oklahoma

3. Haag Engineering, Dallas, Texas

Abstract

Abstract The tornado that affected Moore, Oklahoma, and the surrounding area on 20 May 2013 was an extreme event. It traveled 23 km and damage was up to 1.7 km wide. The tornado killed 24 people, injured over 200 others, and damaged many structures. A team of surveyors from the Norman, Oklahoma, National Weather Center and two private companies performed a detailed survey (all objects/structures) of the tornado to provide better documentation than is normally done, in part to aid future studies of the event. The team began surveying tornado damage on the morning of 21 May and continued the survey process for the next several weeks. Extensive ground surveys were performed. The surveys were aided by use of high-resolution aerial and satellite imagery. The survey process utilized the enhanced Fujita (EF) scale and was facilitated by use of a National Weather Service (NWS) software package: the Damage Assessment Toolkit (DAT). The survey team defined a “well built” house that qualified for an EF5 rating. Survey results document 4253 objects damaged by the tornado, 4222 of them EF-scale damage indicators (DIs). Of the total DIs, about 50% were associated with EF0 ratings. Excluding EF0 damage, 38% were associated with EF1, 24% with EF2, 21% with EF3, 17% with EF4, and only 0.4% associated with EF5. For the strongest level of damage (EF5), only nine homes were found. Survey results are similar to other documented tornadoes, but the amount of EF1 damage is greater than in other cases. Also discussed is the use of non-DI objects that are damaged and ways in which to improve future surveys.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference15 articles.

1. An integrated damage, visual, and radar analysis of the 2013 Moore, Oklahoma EF5 tornado;Atkins;Bull. Amer. Meteor. Soc.,2014

2. Tornado intensity estimation: Past, present, and future;Edwards;Bull. Amer. Meteor. Soc.,2013

3. FEMA, 1999: Midwest tornadoes of May 3, 1999. Building Performance Assessment Team Rep., FEMA Publ. 342. [Available online at http://www.fema.gov/media-library/assets/documents/647.]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3