Sources of Uncertainty in Precipitation-Type Forecasting

Author:

Reeves Heather Dawn1,Elmore Kimberly L.1,Ryzhkov Alexander1,Schuur Terry1,Krause John1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Five implicit precipitation-type algorithms are assessed using observed and model-forecast sounding data in order to measure their accuracy and to gauge the effects of model uncertainty on algorithm performance. When applied to observed soundings, all algorithms provide very reliable guidance on snow and rain (SN and RA). However, their skills for ice pellets and freezing rain (IP and FZRA) are comparatively low. Most misclassifications of IP are for FZRA and vice versa. Deeper investigation reveals that no method used in any of the algorithms to differentiate between IP and FZRA allows for clear discrimination between the two forms. The effects of model uncertainty are also considered. For SN and RA, these effects are minimal and each algorithm performs reliably. Conversely, IP and FZRA are strongly impacted. When the range of uncertainty is fully accounted for, their resulting wet-bulb temperature profiles are nearly indistinguishable, leading to very poor skill for all algorithms. Although currently available data do not allow for a thorough investigation, comparison of the statistics from only those soundings that are associated with long-duration, horizontally uniform regions of FZRA shows there are significant differences between these profiles and those that are from more transient, highly variable environments. Hence, a five-category (SN, RA, IP, FZRA, and IP–FZRA mix) approach is advocated to differentiate between sustained regions of horizontally uniform FZRA (or IP) from more mixed environments.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3