Three-Dimensional Circulation Structure of Summer Heavy Rainfall in Central North China

Author:

Sun Wei1,Yu Rucong2,Li Jian3,Yuan Weihua4

Affiliation:

1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

2. LaSW, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

3. Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

4. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract Based on daily rainfall observations and Japanese 25-year Reanalysis Project data during ~1981–2010, a three-dimensional circulation structure that formed before heavy summer rainfall in central north China (CNC) is revealed in this study. Composite analyses of circulation in advance of 225 heavy rain days show that the circulation structure is characterized by a remarkable upper-tropospheric warm anomaly (UTWA), which covers most of northern China with a center at ~300 hPa. Under hydrostatic and geostrophic equilibriums, the UTWA contributes to the generation of an anticyclonic (cyclonic) anomaly above (below). The anticyclonic anomaly strengthens (weakens) westerly winds to the north (south) of the warm center and pushes the high-level westerly jet to the north. The cyclonic anomaly deepens the trough upstream of CNC and intensifies lower southwesterly winds to the mideast of the warm center. As a result, the northerly stretched high-level jet produces upper divergence in its right-front side and the intensified southwesterly winds induce lower moisture convergence in its left-front side, causing heavy rainfall in CNC. Correlation analyses further confirm the close connections between UTWA and circulation in the upper and lower troposphere. The correlation coefficients between UTWA and the upper geopotential height, upper westerly jet, and lower southerly flow reach 0.95, 0.70, and 0.39, implying that the two critical factors leading to intense rainfall in CNC, the high-level jet and the low-level southerly flow, are closely connected with the UTWA. Consequently, in the future analyses and forecasts of heavy rainfall over northern China, more attention should be paid to the temperature in the upper troposphere.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference33 articles.

1. Statistical analysis between the summer Okhotsk high and precipitation in Beijing (in Chinese);Bai,1982

2. Changes in precipitation extremes in the Hawaiian Islands in a warming climate;Chu;J. Climate,2010

3. Analytical and numerical modelling of jet streaks: Barotropic dynamics;Cunningham;Quart. J. Roy. Meteor. Soc.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3