A Statistical Analysis on the Dependence of Tropical Cyclone Intensification Rate on the Storm Intensity and Size in the North Atlantic

Author:

Xu Jing1,Wang Yuqing2

Affiliation:

1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

2. International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Abstract

Abstract The dependence of tropical cyclone (TC) intensification rate IR on storm intensity and size was statistically analyzed for North Atlantic TCs during 1988–2012. The results show that IR is positively (negatively) correlated with storm intensity (the maximum sustained near-surface wind speed Vmax) when Vmax is below (above) 70–80 knots (kt; 1 kt = 0.51 m s−1), and negatively correlated with storm size in terms of the radius of maximum wind (RMW), the average radius of gale-force wind (AR34), and the outer-core wind skirt parameter DR34 (=AR34 − RMW). The turning point for Vmax of 70–80 kt is explained as a balance between the potential intensification and the maximum potential intensity (MPI). The highest IR occurs for Vmax = 80 kt, RMW ≤ 40 km, and AR34 = DR34 = 150 km. The high frequency of occurrence of intensifying TCs occurs for Vmax ≤ 80 kt and RMW between 20 and 60 km, AR34 ≤ 200 km, and DR34 ≤ 150 km. Rapid intensification (RI) often occurs in a relatively narrow parameter space in storm intensity and both inner- and outer-core sizes. In addition, a theoretical basis for the intensity dependency has also been provided based on a previously constructed simplified dynamical system for TC intensity prediction.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3