Impact of Land Surface Snow Processes on the Arctic Stable Boundary Layer

Author:

Hong Xiaodong1,Jiang Qingfang1

Affiliation:

1. a Naval Research Laboratory, Monterey, California

Abstract

Abstract The impact of land surface snow processes on the Arctic stable boundary layer (ASBL) is investigated using the Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to reduce the cold bias caused by decoupling between the land surface and atmosphere. The Noah land surface model (LSM) with improved snow processes is examined using COAMPS forecast forcing in the one-dimensional mode for one month. The new snow physics shows that the snow properties, roughness length, and sensible heat flux are modified as expected to compensate for the old LSM deficiency. These new snow processes are incorporated into the COAMPS Noah LSM, and the 48-h forecasts using both old and new Noah LSMs are performed for January 2021 with an every-6-h data assimilation update cycle. Standard verifications of the 48-h forecasts have used all available observational datasets and the snow depth from the Land Information System (LIS) analyses. The statistics have shown reduced monthly mean cold biases ∼1°C by the new snow physics. The weaker strength of surface inversion and stronger turbulence kinetic energy (TKE) from the new snow physics provides a higher boundary layer due to significantly stronger eddy mixing. The simulations have also shown the insignificant impact of different lateral boundary conditions obtained from the global forecasts or analyses on the results of the new snow physics. This study highlights the importance of the revised snow physics in Noah LSM for reducing the decoupling problem, improving the forecasts, and studying ASBL physics over the Arctic region.

Funder

U.S. Naval Research Laboratory

Publisher

American Meteorological Society

Reference43 articles.

1. Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains;Barlage, M.,2010

2. Bradley, E. F., C. W. Fairall, J. E. Hare, and A. A. Grachev, 2000: An old and improved bulk algorithm for air–sea fluxes: COARE2.6a. Preprints, 14th Symp. on Boundary Layer and Turbulence, Aspen, CO, Amer. Meteor. Soc., 294–296, http://ams.confex.com/ams/AugAspen/techprogram/paper_14695.htm.

3. Chandrasekar, A., 2022: Boundary conditions. Numerical Methods for Atmospheric and Oceanic Sciences, Cambridge University Press, 390–402, https://doi.org/10.1017/9781009119238.014.

4. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale ETA model;Chen, F.,1997

5. Operational multivariate ocean data assimilation;Cummings, J. A.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3