Spatiotemporal Variations of Tropical- and Non-Tropical-Cyclone-Induced Rainfall over Southeast China and the Teleconnections to Climatic Indices

Author:

Zhou Yuanyuan12,Gao Liang13

Affiliation:

1. a State Key Laboratory of Internet of Things for Smart City and Department of Civil and Environmental Engineering, University of Macau, Macao, China

2. b School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

3. c Center for Ocean Research in Hong Kong and Macau, Hong Kong, China

Abstract

Abstract The spatiotemporal variations of annual tropical-cyclone-induced rainfall (TCR) and non-tropical-cyclone-induced rainfall (NTCR) during 1960–2017 in Southeast China are investigated in this study. The teleconnections to sea surface temperature, the Arctic Oscillation, the Southern Oscillation, and the Indian Ocean dipole are examined. A significant decrease in annual TCR in the Pearl River basin was detected, while an increase in annual TCR in rainstorms was observed in the northeast of the Pearl River basin and south of the Yangtze River basin. A northward migration of a TCR belt was identified, which was also indicated by the pronounced anomalies of annual TCR. There was in general an increasing trend of non-tropical-cyclone-induced moderate rain, heavy rain, and rainstorms in Southeast China. Compared with the non-tropical-cyclone-induced heavy rain, the abnormal non-tropical-cyclone-induced rainstorms are more northerly. Both monthly TCR and NTCR were remarkably affected by the Arctic Oscillation, Southern Oscillation, and Indian Ocean dipole. TCR was more easily affected by the Arctic Oscillation compared to NTCR. Significance Statement Tropical-cyclone- and non-tropical-cyclone-induced rainfall (TCR and NTCR) prevails in Southeast China, and their characteristics of spatiotemporal variability are of significance in predicting rainfall over the study area. Therefore, this study aims to detect the degree to which rainfall varies in time and space, respectively, using the Mann–Kendall test and the empirical orthogonal function method. Moreover, to explore which climatic factor contributes the most to the spatiotemporal variability of TCR and NTCR, the teleconnections to the large-scale climatic indices including sea surface temperature, the Arctic Oscillation, the Southern Oscillation, and the Indian Ocean dipole are studied. The spatiotemporal variations of TCR and NTCR were affected by the sea surface temperature and the other three large-scale climatic indices. The findings in this study are expected to deepen the understanding of spatiotemporal variations of TCR and NTCR over Southeast China and the teleconnections to climatic indices.

Funder

National Natural Science Foundation of China

the Science and Technology Development Fund, Macau SAR

UM Research Grant

Shenzhen Science and Technology Innovation Committee

CORE

Publisher

American Meteorological Society

Reference42 articles.

1. Spring asymmetric mode in the tropical Indian Ocean: Role of El Niño and IOD;Chakravorty, S.,2013

2. Global warming and western North Pacific typhoon activity from an observational perspective;Chan, J. C. L.,2004

3. Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon;Chen, W.,2013

4. Possible relationship between western North Pacific tropical cyclone activity and Arctic Oscillation;Choi, K.-S.,2010

5. Impact of Arctic Oscillation on the East Asian climate: A review;He, S.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3