The Hazards Posed by Mesoscale Lightning Megaflashes

Author:

Peterson Michael1,Stano Geoffrey2

Affiliation:

1. a Space and Remote Sensing Group, Los Alamos National Laboratory, Los Alamos, New Mexico

2. b University of Alabama in Huntsville, Huntsville, Alabama

Abstract

AbstractLightning megaflashes extending over >100-km distances have been observed by the Geostationary Lightning Mappers (GLMs) on NOAA’s R-series Geostationary Operational Environmental Satellites (GOES). The hazards posed by megaflashes are unclear, however, because of limitations in the GLM data. We address these by reprocessing GOES-16 GLM measurements from 1 January 2018 to 15 January 2020 and integrating them with Earth Networks Global Lightning Network (ENGLN) observations. ENGLN verified 194 880 GLM megaflashes as natural lightning. Of these, 127 479 flashes occurred following the October 2018 GLM software update that standardized GLM timing. Reprocessed GLM/ENGLN lightning maps from these postupdate cases provide a comprehensive view of how individual megaflashes evolve. This megaflash dataset is used to generate statistics that describe their hazards. The average megaflash produces 5–7 cloud-to-ground (CG) strokes that are spread across 40%–50% of the flash extent. As flash extent increases beyond 100 km, megaflashes become concentrated in key hot-spot regions in North and South America while the number of CG and intracloud events per flash and the overall peak current increase. CGs in the larger megaflashes occur over 80% of the flash extent measured by GLM, and the majority contain regions where the megaflash is the only lightning activity in the preceding hour. These statistics demonstrate that there is no safe location below an electrified cloud that is producing megaflashes, and current lightning safety guidance is not always sufficient to mitigate megaflash hazards.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3