Probabilistic Quantitative Precipitation Estimation in Complex Terrain

Author:

Clark Martyn P.1,Slater Andrew G.1

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Abstract

Abstract This paper describes a flexible method to generate ensemble gridded fields of precipitation in complex terrain. The method is based on locally weighted regression, in which spatial attributes from station locations are used as explanatory variables to predict spatial variability in precipitation. For each time step, regression models are used to estimate the conditional cumulative distribution function (cdf) of precipitation at each grid cell (conditional on daily precipitation totals from a sparse station network), and ensembles are generated by using realizations from correlated random fields to extract values from the gridded precipitation cdfs. Daily high-resolution precipitation ensembles are generated for a 300 km × 300 km section of western Colorado (dx = 2 km) for the period 1980–2003. The ensemble precipitation grids reproduce the climatological precipitation gradients and observed spatial correlation structure. Probabilistic verification shows that the precipitation estimates are reliable, in the sense that there is close agreement between the frequency of occurrence of specific precipitation events in different probability categories and the probability that is estimated from the ensemble. The probabilistic estimates have good discrimination in the sense that the estimated probabilities differ significantly between cases when specific precipitation events occur and when they do not. The method may be improved by merging the gauge-based precipitation ensembles with remotely sensed precipitation estimates from ground-based radar and satellites, or with precipitation and wind fields from numerical weather prediction models. The stochastic modeling framework developed in this study is flexible and can easily accommodate additional modifications and improvements.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3