Observed Vegetation–Climate Feedbacks in the United States*

Author:

Notaro M.1,Liu Z.1,Williams J. W.2

Affiliation:

1. Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

2. Department of Geography, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

Abstract Observed vegetation feedbacks on temperature and precipitation are assessed across the United States using satellite-based fraction of photosynthetically active radiation (FPAR) and monthly climate data for the period of 1982–2000. This study represents the first attempt to spatially quantify the observed local impact of vegetation on temperature and precipitation over the United States for all months and by season. Lead–lag correlations and feedback parameters are computed to determine the regions where vegetation substantially impacts the atmosphere and to quantify this forcing. Temperature imposes a significant instantaneous forcing on FPAR, while precipitation's impact on FPAR is greatest at one-month lead, particularly across the prairie. An increase in vegetation raises the surface air temperature by absorbing additional radiation and, in some cases, masking the high albedo of snow cover. Vegetation generally exhibits a positive forcing on temperature, strongest in spring and particularly across the northern states. The local impact of FPAR on precipitation appears to be spatially inhomogeneous and relatively weak, potentially due to the atmospheric transport of transpired water. The computed feedback parameters can be used to evaluate vegetation–climate interactions simulated by models with dynamic vegetation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3