The Motion of Simulated Convective Storms as a Function of Basic Environmental Parameters

Author:

Kirkpatrick J. Cody1,McCaul Eugene W.2,Cohen Charles2

Affiliation:

1. University of Alabama in Huntsville, Huntsville, Alabama

2. Universities Space Research Association, Huntsville, Alabama

Abstract

Abstract Based on results from a three-dimensional cloud-resolving model, it is shown that simulated convective storm motions are affected by thermodynamic as well as kinematic properties of the environment. In addition to the mean wind and its vertical shear, the effect on isolated storm motion of parameters such as bulk convective available potential energy (CAPE), the vertical distribution of buoyancy in the profile, the heights of the lifting condensation level (LCL) and level of free convection (LFC), and cloud-base temperature is considered. Storm motions show at least some sensitivity to all input parameters. Consistent with previous studies, hodograph radius has the most pronounced effect, but the vertical distribution of shear (which also influences the mean wind) affects storm evolution and propagation, even when the effective hodograph radius is unchanged. Among the thermodynamic parameters, the most significant variations occur when the LCL–LFC configuration is modified or when cloud-base temperature is changed. The effects of increases in bulk CAPE act mainly to increase the temporal variability of storm motions. This temporal variability is found to consist both of oscillations about a mean state and trends (accelerations) and is related to increases in the complexity of storm evolution with increasing CAPE. The results point to the importance of environmental factors that enhance storm intensity and rotation, which play a key role in determining storm deviate motion.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3