Affiliation:
1. Marine Meteorology Division, Naval Research Laboratory, Monterey, California
2. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
Abstract
Abstract
High-resolution mesoscale model sea surface temperature (SST) analyses and surface wind stress forecasts off the U.S. West Coast are analyzed on monthly time scales for robust signatures of air–sea interaction as the surface winds encounter ocean surface features such as SST fronts, filaments, and eddies. This interaction is manifest by the linear relationship, or coupling coefficient, between the downwind SST gradient and wind stress divergence and between the crosswind SST gradient and wind stress curl evident from analysis of fields averaged over 29 days. This study examines fields from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model, spanning the summer months, June–September, for four consecutive years, 2002–05. Relative to several models evaluated previously, coupling coefficients are much closer to those calculated from Quick Scatterometer (QuikSCAT) satellite measurements. In addition, the summertime correlation between the wind stress derivative field and its corresponding SST gradient field on monthly time scales agrees well with satellite-derived correlations. Sensible and latent heat flux fields are also analyzed for features indicative of pronounced air–sea exchange associated with SST influence.
Publisher
American Meteorological Society
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献