Double-Diffusive Intrusions in a Stable Salinity Gradient “Heated from Below”

Author:

Simeonov Julian1,Stern Melvin E.1

Affiliation:

1. Department of Oceanography, The Florida State University, Tallahassee, Florida

Abstract

Abstract Two-dimensional direct numerical simulations (DNS) are used to investigate the growth and nonlinear equilibration of spatially periodic double-diffusive intrusion for negative vertical temperature Tz < 0 and salinity Sz < 0 gradients, which are initially stable to small-scale double diffusion. The horizontal temperature Tx and salinity Sx gradients are assumed to be uniform, density compensated, and unbounded. The weakly sloping intrusion is represented as a mean lateral flow in a square computational box tilted with a slope equal to that of the fastest-growing linear theory mode; the vertical (η) domain size of the box L*η is a multiple of the fastest-growing wavelength. Solutions for the fastest-growing wavelength show that the intrusion growth is disrupted by salt fingers that develop when the rotation of the isotherms and isohalines by the intrusion shear results in temperature and salinity inversions; the thick inversion regions are separated by a thin interface supporting diffusive convection. These equilibrium solutions were always unstable to longer vertical wavelengths arising because of the merging of the inversion layers. The DNS predicts the following testable results for the maximum lateral velocity U* max = 0.13NSL*η, the lateral heat flux F* = 0.008ρCP(Sx/Sz)1/2(NS/KT)1/4NSL*η2.5(βSz/α), and the interface thickness hρ = 0.12L*η, where NS = , g is the gravity acceleration, ρ is the density, β/α is the haline contraction/heat expansion coefficient, and CP is the specific heat capacity. The results are compared with observations in the Arctic Ocean.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3