Turbulent Channel Flows on a Rotating Earth

Author:

Handler Robert A.1,Mied Richard P.1,Lindemann Gloria J.1,Evans Thomas E.1

Affiliation:

1. Remote Sensing Division, Naval Research Laboratory, Washington, D.C

Abstract

Abstract This paper deals with flow in a rectilinear channel on a rotating earth. The flow is directed perpendicular to the background planetary vorticity; both an analytical theory and numerical simulations are employed. The analytical approach assumes the existence of an eddy viscosity and employs a perturbation expansion in powers of the reciprocal of the Rossby number (Ro). At lowest order, a cross-channel circulation arises because of the tilting of the planetary vorticity vector by the shear in the along-channel direction. This circulation causes a surface convergence, which achieves its maximum value at a channel aspect ratio (= width/depth) of approximately 10. The location of the maximum surface convergence moves from near the center of the channel to a position very near the sidewalls as the aspect ratio increases from O(1) to O(100). To include the effects of turbulence, direct numerical pseudospectral simulations of the equations of motion are employed. While holding the friction Reynolds number fixed at 230.27, a series of simulations with increasing rotation (Ro = ∞, 10, 1.0, 0.1) are performed. The channelwide circulation cell observed in the analytical theory occurs for the finite Rossby number, but is displaced by lateral self-advection. In addition, turbulence-driven corner circulations appear, which make the along-channel maximum velocity appear at a subsurface location. The most interesting effect is the segregation of the turbulence to one side of the channel, while the turbulence is suppressed on the opposite side.

Publisher

American Meteorological Society

Subject

Oceanography

Reference40 articles.

1. The effect of the Earth’s rotation on laminar flow in pipes.;Benton;J. Appl. Math.,1956

2. Flow through a rapidly rotating conduit of arbitrary cross-section.;Benton;J. Fluid Mech.,1966

3. Turbulent Flow: Analysis, Measurement, and Prediction.;Bernard,2002

4. Vortex dynamics and the production of Reynolds stress.;Bernard;J. Fluid Mech.,1993

5. Planetary fluid dynamics.;Charney,1973

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3