Estimation of Subsurface Temperatures in the Tattapani Geothermal Field, Central India, from Limited Volume of Magnetotelluric Data and Borehole Thermograms Using a Constructive Back-Propagation Neural Network

Author:

Akpan Anthony E.1,Narayanan Mahesh2,Harinarayana T.2

Affiliation:

1. Applied Geophysics Programme, Physics Department, University of Calabar, Calabar, Cross River State, Nigeria

2. National Geophysical Research Institute, Hyderabad, India

Abstract

Abstract A constructive back-propagation code that was designed to run as a single-hidden-layer, feed-forward neural network (SLFFNN) has been adapted and used to estimate subsurface temperature from a small volume of magnetotelluric (MT)-derived electrical resistivity data and borehole thermograms. The code was adapted to use a looping procedure in searching for better initialization conditions that can optimally solve nonlinear problems using the random weight initialization approach. Available one-dimensional (1D) MT-derived resistivity data and borehole temperature records from the Tattapani geothermal field, central India, were collated and digitized at 10-m intervals. The two datasets were paired to form a set of input–output pairs. The paired data were randomized, standardized, and partitioned into three mutually exclusive subsets. The various subsets had 52% (later increased to 61%), 30%, and 18% (later reduced to 9%) for training, validation, and testing, respectively, in the first and second training phases. The second training phase was meant to assess the influence of the training data volume on network performance. Standard statistical techniques including adjusted coefficient of determination (R2a), relative error (ɛ), absolute average deviation (AAD), root-mean-square error (RMSE), and regression analysis were used to quantitatively rate network performance. A manually designed two-hidden-layer, feed-forward network with 20 and 15 neurons in the first and second layers was also adopted in solving the same problem. Performance ratings were observed to be 0.97, 3.75, 4.09, 1.41, 1.18, and 1.08 for R2a, AAD, ɛ, RMSE, slope, and intercept, respectively, compared to an ɛ of 20.33 observed with the manually designed network. The SLFFNN is thus a structurally flexible network that performs better in spite of the small volume of data used in testing the network. The network needs to be tested further.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3