An Objective Climatology of Carolina Coastal Fronts

Author:

Appel K. Wyat1,Riordan Allen J.2,Holley Timothy A.3

Affiliation:

1. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

2. North Carolina State University, Raleigh, North Carolina

3. Weathernews Americas, Inc., Norman, Oklahoma

Abstract

Abstract This study describes a simple objective method to identify cases of coastal frontogenesis offshore of the Carolinas and to characterize the sensible weather associated with frontal passage at measurement sites near the coast. The identification method, based on surface hourly data from offshore and adjacent land stations, was applied to an 11-yr dataset (1984–94). A total of 379 coastal fronts was found, 70 of which eventually made landfall along the North Carolina coast; 112 that remained offshore, and 197 were termed diurnal since they remained offshore but disappeared during daylight hours. Results show that most coastal and offshore sites experience a wind shift of about 40°–70° and a warming of about 2°–3°C during the hour of frontal passage. Exceptions include sites near colder waters where the rates are markedly reduced and frontal passage is often less discernible. Excluding diurnal fronts, just over half the cases were associated with cold-air damming (CAD) during the cold season of 16 October–15 April. Most of these winter cases linked with CAD were onshore fronts. During the warm season, most fronts were diurnal, but the association with CAD was still significant. To explore the synoptic-scale environment, composite maps for the cold season were generated for all three frontal subtypes from NCEP–NCAR reanalysis data. Results show a strong surface anticyclone centered north of the region of frontogenesis for all three composites. However, several features in the synoptic-scale regimes appear to differentiate the three frontal types. For example, cyclogenesis in the Gulf of Mexico and onshore southeasterly low-level flow along the southeast Atlantic coast accompanied by warm advection distinguish onshore fronts from the other two types. The offshore fronts are accompanied by more nearly zonal flow aloft and a surface anticyclone that stalls near the New England coastline. Finally, the diurnal type is associated with much weaker pressure and height fields and an east–west elongated surface anticyclone centered much farther south than in the other cases.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3